939 resultados para Embryonic stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inheritance of an inactivated form of the VHL tumor suppressor gene predisposes patients to develop von Hippel–Lindau disease, and somatic VHL inactivation is an early genetic event leading to the development of sporadic renal cell carcinoma. The VHL gene was disrupted by targeted homologous recombination in murine embryonic stem cells, and a mouse line containing an inactivated VHL allele was generated. While heterozygous VHL (+/−) mice appeared phenotypically normal, VHL −/− mice died in utero at 10.5 to 12.5 days of gestation (E10.5 to E12.5). Homozygous VHL −/− embryos appeared to develop normally until E9.5 to E10.5, when placental dysgenesis developed. Embryonic vasculogenesis of the placenta failed to occur in VHL −/− mice, and hemorrhagic lesions developed in the placenta. Subsequent hemorrhage in VHL −/− embryos caused necrosis and death. These results indicate that VHL expression is critical for normal extraembryonic vascular development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study RAG2 gene regulation in vivo, we developed a blastocyst complementation method in which RAG2-deficient embryonic stem cells were transfected with genomic clones containing RAG2 and then assessed for their ability to generate lymphocytes. A RAG2 genomic clone that contained only the RAG2 promoter sequences rescued V(D)J recombination in RAG2-deficient pro-B cell lines, but did not rescue development of RAG2-deficient lymphocytes in vivo. However, inclusion of varying lengths of sequences 5′ of the RAG2 promoter generated constructs capable of rescuing only in vivo B cell development, as well as other constructs that rescued both B and T cell development. In particular, the 2-kb 5′ region starting just upstream of the RAG2 promoter, as well as the region from 2–7 kb 5′, could independently drive B cell development, but not efficient T cell development. Deletion of the 2-kb 5′ region from the murine germ line demonstrated that this region was not required for RAG expression sufficient to generate normal B or T cell numbers, implying redundancy among 5′ elements. We conclude that RAG2 expression in vivo requires elements beyond the core promoter, that such elements contribute to differential regulation in the B vs. T lineages, and that sequences sufficient to direct B cell expression are located in the promoter-proximal 5′ region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hematopoiesis originates in a population of stem cells with transplantable lympho-myeloid reconstituting potential, but a method for quantitating such cells has not been available. We now describe a simple assay that meets this need. It is based on the ability of sublethally irradiated immunodeficient nonobese diabetic–scid/scid (NOD/SCID) mice to be engrafted by intravenously injected human hematopoietic cells and uses limiting dilution analysis to measure the frequency of human cells that produce both CD34−CD19+ (B-lymphoid) and CD34+ (myeloid) colony-forming cell progeny in the marrow of such recipients 6 to 8 weeks post-transplant. Human cord blood (CB) contains ≈5 of these competitive repopulating units (CRU) per ml that have a similar distribution between the CD38− and CD38+ subsets of CD34+ CB cells as long-term culture-initiating cells (LTC-IC) (4:1 vs. 2:1). Incubation of purified CD34+CD38− human CB cells in serum-free medium containing flt-3 ligand, Steel factor, interleukin 3, interleukin 6, and granulocyte colony-stimulating factor for 5–8 days resulted in a 100-fold expansion of colony-forming cells, a 4-fold expansion of LTC-IC, and a 2-fold (but significant, P < 0.02) increase in CRU. The culture-derived CRU, like the original CB CRU, generated pluripotent, erythroid, granulopoietic, megakaryopoietic, and pre-B cell progeny upon transplantation into NOD/SCID mice. These findings demonstrate an equivalent phenotypic heterogeneity amongst human CB cells detectable as CRU and LTC-IC. In addition, their similarly modest response to stimulation by a combination of cytokines that extensively amplify LTC-IC from normal adult marrow underscores the importance of ontogeny-dependent changes in human hematopoietic stem cell proliferation and self-renewal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stimulation by Flk2-ligand (FL) of blast colony formation by murine bone marrow cells was selectively potentiated by the addition of regulators sharing in common the gp130 signaling receptor–leukemia inhibitory factor (LIF), oncostatin M, interleukin 11, or interleukin 6. Recloning of blast colony cells indicated that the majority were progenitor cells committed exclusively to macrophage formation and responding selectively to proliferative stimulation by macrophage colony-stimulating factor. Reculture of blast colony cells initiated by FL plus LIF in cultures containing granulocyte/macrophage colony-stimulating factor plus tumor necrosis factor α indicated that at least some of the cells were capable of maturation to dendritic cells. The cells forming blast colonies in response to FL plus LIF were unrelated to those forming blast colonies in response to stimulation by stem cell factor and appear to be a distinct subset of mature hematopoietic stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have discovered that cells derived from the skeletal muscle of adult mice contain a remarkable capacity for hematopoietic differentiation. Cells prepared from muscle by enzymatic digestion and 5-day in vitro culture were harvested, and 18 × 103 cells were introduced into each of six lethally irradiated recipients together with 200 × 103 distinguishable whole bone marrow cells. After 6 or 12 weeks, all recipients showed high-level engraftment of muscle-derived cells representing all major adult blood lineages. The mean total contribution of muscle cell progeny to peripheral blood was 56 ± 20% (SD), indicating that the cultured muscle cells generated approximately 10- to 14-fold more hematopoietic activity than whole bone marrow. When bone marrow from one mouse was harvested and transplanted into secondary recipients, all recipients showed high-level multilineage engraftment (mean 40%), establishing the extremely primitive nature of these stem cells. We also show that muscle contains a population of cells with several characteristics of bone marrow-derived hematopoietic stem cells, including high efflux of the fluorescent dye Hoechst 33342 and expression of the stem cell antigens Sca-1 and c-Kit, although the cells lack the hematopoietic marker CD45. We propose that this population accounts for the hematopoietic activity generated by cultured skeletal muscle. These putative stem cells may be identical to muscle satellite cells, some of which lack myogenic regulators and could be expected to respond to hematopoietic signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of a common precursor for endothelial and hemopoietic cells, termed the hemangioblast, has been postulated since the beginning of the century. Recently, deletion of the endothelial-specific vascular endothelial growth factor receptor 2 (VEGFR2) by gene targeting has shown that both endothelial and hemopoietic cells are absent in homozygous null mice. This observation suggested that VEGFR2 could be expressed by the hemangioblast and essential for its further differentiation along both lineages. However, it was not possible to exclude the hypothesis that hemopoietic failure was a secondary effect resulting from the absence of an endothelial cell microenvironment. To distinguish between these two hypotheses, we have produced a mAb directed against the extracellular domain of avian VEGFR2 and isolated VEGFR2+ cells from the mesoderm of chicken embryos at the gastrulation stage. We have found that in clonal cultures, a VEGFR2+ cell gives rise to either a hemopoietic or an endothelial cell colony. The developmental decision appears to be regulated by the binding of two different VEGFR2 ligands. Thus, endothelial differentiation requires VEGF, whereas hemopoietic differentiation occurs in the absence of VEGF and is significantly reduced by soluble VEGFR2, showing that this process could be mediated by a second, yet unidentified, VEGFR2 ligand. These observations thus suggest strongly that in the absence of the VEGFR2 gene product, the precursors of both hemopoietic and vascular endothelial lineages cannot survive. These cells therefore might be the initial targets of the VEGFR2 null mutation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of in vitro embryonic stem (ES) cell differentiation and targeted gene disruption has defined complex regulatory events underlying oxidative stress-induced cardiac apoptosis, a model of postischemic reperfusion injury of myocardium. ES cell-derived cardiac myocytes (ESCM) having targeted disruption of the MEKK1 gene were extremely sensitive, relative to wild-type ESCM, to hydrogen peroxide-induced apoptosis. In response to oxidative stress, MEKK1−/− ESCM failed to activate c-Jun kinase (JNK) but did activate p38 kinase similar to that observed in wild-type ESCM. The increased apoptosis was mediated through enhanced tumor necrosis factor α production, a response that was positively and negatively regulated by p38 and the MEKK1-JNK pathway, respectively. Thus, MEKK1 functions in the survival of cardiac myocytes by inhibiting the production of a proapoptotic cytokine. MEKK1 regulation of the JNK pathway is a critical response for the protection against oxidative stress-induced apoptosis in cardiac myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report herein the successful long term engraftment of highly purified hematopoietic stem cells (HSCs) without any facilitating cells in fully allogeneic recipient mice across the entire major histocompatibility complex (MHC) transplantation barrier. This finding challenges the assumption that highly purified marrow HSCs alone cannot produce long-lived allogeneic bone marrow chimeras across the MHC barrier. In the present experiments, 1 × 105 HSCs from 5-fluorouracil (5-FU)-treated donors, without any facilitating cells, have been found to repopulate lethally irradiated fully allogeneic recipients. Low density, lineage-negative (CD4−, CD8−, B220−, Mac-1−, Gr-1−), CD71-negative, class I highly positive, FACS-sorted cells from 5-FU-treated C57BL/6 (B6) donor mice were transplanted into lethally irradiated BALB/c recipients. (BALB/c → BALB/c) → BALB/c T cell-depleted marrow cells used as compromised cells were also transplanted into the recipients to permit experiments to be pursued over a long period of time. Cells of donor origin in all recognized lineages of hematopoietic cells developed in these allogeneic chimeras. One thousand HSCs were sufficient to repopulate hemiallogeneic recipients, but 1 × 104 HSCs alone from 5-FU-treated donors failed to repopulate the fully allogeneic recipients. Transplantation of primary marrow stromal cells or bones of the donor strain into recipient, together with 1 × 104 HSCs, also failed to reconstitute fully allogeneic recipients. Suppression of resistance of recipients by thymectomy or injections of granulocyte colony-stimulating factor before stem cell transplantation enhanced the engraftment of allogeneic HSCs. Our experiments show that reconstitution of all lymphohematopoietic lineages across the entire MHC transplantation barriers may be achieved by transplanting allogeneic HSCs alone, without any facilitating cells, as long as a sufficient number of HSCs is transplanted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During B cell development, rearrangement and expression of Ig heavy chain (HC) genes promote development and expansion of pre-B cells accompanied by the onset of Ig light chain (LC) variable region gene assembly. To elucidate the signaling pathways that control these events, we have tested the ability of activated Ras expression to promote B cell differentiation to the stage of LC gene rearrangement in the absence of Ig HC gene expression. For this purpose, we introduced an activated Ras expression construct into JH-deleted embryonic stem cells that lack the ability to assemble HC variable region genes and assayed differentiation potential by recombination activating gene (RAG) 2-deficient blastocyst complementation. We found that activated Ras expression induces the progression of B lineage cells beyond the developmental checkpoint ordinarily controlled by μ HC. Such Ras/JH-deleted B cells accumulate in the periphery but continue to express markers associated with precursor B cells including RAG gene products. These peripheral Ras/JH-deleted B cell populations show extensive Ig LC gene rearrangement but maintain an extent of κ LC gene rearrangement and a preference for κ over λ LC gene rearrangement similar to that of wild-type B cells. We discuss these findings in the context of potential mechanisms that may regulate Ig LC gene rearrangement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification and physical isolation of epithelial stem cells is critical to our understanding of their growth regulation during homeostasis, wound healing, and carcinogenesis. These stem cells remain poorly characterized because of the absence of specific molecular markers that permit us to distinguish them from their progeny, the transit amplifying (TA) cells, which have a more restricted proliferative potential. Cell kinetic analyses have permitted the identification of murine keratinocyte stem cells (KSCs) as slowly cycling cells that retain [3H]thymidine ([3H]Tdr) label, termed label-retaining cells (LRCs), whereas TA cells are visualized as rapidly cycling cells after a single pulse of [3H]Tdr, termed pulse-labeled cells (PLCs). Here, we report on the successful separation of KSCs from TA cells through the combined use of in vivo cell kinetic analysis and fluorescence-activated cell sorting. Specifically, we demonstrate that murine dorsal keratinocytes characterized by their high levels of α6 integrin and low to undetectable expression of the transferrin receptor (CD71) termed α6briCD71dim cells, are enriched for epithelial stem cells because they represent a minor (≈8%) and quiescent subpopulation of small blast-like cells, with a high nuclear:cytoplasmic ratio, containing ≈70% of label-retaining cells, the latter being a well documented characteristic of stem cells. Conversely, TA cells could be enriched in a phenotypically distinct subpopulation termed α6briCD71bri, representing the majority (≈60%) of basal keratinocytes that are actively cycling, and importantly contain ≈70% of [3H]Tdr pulse-labeled cells. Importantly, immunostaining of dorsal skin revealed the presence of CD71dim cells in the hair follicle bulge region, a well documented location for KSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidation of mechanisms that regulate hematopoietic stem cell self-renewal and differentiation would be facilitated by the identification of defined culture conditions that allow these cells to be amplified. We now demonstrate a significant net increase (3-fold, P < 0.001) in vitro of cells that are individually able to permanently and competitively reconstitute the lymphoid and myeloid systems of syngeneic recipient mice when Sca-1+lin− adult marrow cells are incubated for 10 days in serum-free medium with interleukin 11, flt3-ligand, and Steel factor. Moreover, the culture-derived repopulating cells continued to expand their numbers in the primary hosts at the same rate seen in recipients of noncultured stem cells. In the expansion cultures, long-term culture-initiating cells increased 7- ± 2-fold, myeloid colony-forming cells increased 140- ± 36-fold, and total nucleated cells increased 230- ± 62-fold. Twenty-seven of 100 cultures initiated with 15 Sca-1+lin− marrow cells were found to contain transplantable stem cells 10 days later. This frequency of positive cultures is the same as the frequency of transplantable stem cells in the original input suspension, suggesting that most had undergone at least one self-renewal division in vitro. No expansion of stem cells was seen when Sca-1+TER119− CD34+ day 14.5 fetal liver cells were cultured under the same conditions. These findings set the stage for further investigations of the mechanisms by which cytokine stimulation may elicit different outcomes in mitotically activated hematopoietic stem cells during ontogeny and in the adult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging in vivo and cell division in vitro are associated with telomere shortening. Several lines of evidence suggest that telomere length may be a good predictor of the long term replicative capacity of cells. To investigate the natural fate of chromosome telomeres of hematopoietic stem cells in vivo, we measured the telomere length of peripheral blood granulocytes from 11 fully engrafted bone marrow transplant recipients and from their respective donors. In 10 of 11 donor–recipient pairs, the telomere length was significantly reduced in the recipient and the extent of reduction correlated inversely with the number of nucleated cells infused. These data provide internally controlled in vivo evidence that, concomitantly with their proliferation, hematopoietic stem cells lose telomere length; it is possible that, as a result, their proliferative potential is reduced. These findings must be taken into account when developing new protocols in which few stem cells are used for bone marrow transplantation or for gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have demonstrated hematopoietic stem cell amplification in vitro after the activation of three cell-surface receptors: flt3/flk2, c-kit, and gp130. We now show flt3-ligand and Steel factor alone will stimulate >85% of c-kit+Sca-1+lin− adult mouse bone marrow cells to proliferate in single-cell serum-free cultures, but concomitant retention of their stem cell activity requires additional exposure to a ligand that will activate gp130. Moreover, this response is restricted to a narrow range of gp130-activating ligand concentrations, above and below which hematopoietic stem cell activity is lost. These findings indicate a unique contribution of gp130 signaling to the maintenance of hematopoietic stem cell function when these cells are stimulated to divide with additional differential effects dictated by the intensity of gp130 activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.