978 resultados para Elliott, Jack
Resumo:
Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO2) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO2 moieties to a sulfide phase was observed using XPS.
Resumo:
A series of polymers with a comb architecture were prepared where the poly(olefin sulfone) backbone was designed to be highly sensitive to extreme ultraviolet (EUV) radiation, while the well-defined poly(methyl methacrylate) (PMMA) arms were incorporated with the aim of increasing structural stability. It is hypothesized that upon EUV radiation rapid degradation of the polysulfone backbone will occur leaving behind the well-defined PMMA arms. The synthesized polymers were characterised and have had their performance as chain-scission EUV photoresists evaluated. It was found that all materials possess high sensitivity towards degradation by EUV radiation (E0 in the range 4–6 mJ cm−2). Selective degradation of the poly(1-pentene sulfone) backbone relative to the PMMA arms was demonstrated by mass spectrometry headspace analysis during EUV irradiation and by grazing-angle ATR-FTIR. EUV interference patterning has shown that materials are capable of resolving 30 nm 1:1 line:space features. The incorporation of PMMA was found to increase the structural integrity of the patterned features. Thus, it has been shown that terpolymer materials possessing a highly sensitive poly(olefin sulfone) backbone and PMMA arms are able to provide a tuneable materials platform for chain scission EUV resists. These materials have the potential to benefit applications that require nanopattering, such as computer chip manufacture and nano-MEMS.
Resumo:
A series of high-performance polycarbonates have been prepared with glass-transition temperatures and decomposition temperatures that are tunable by varying the repeat-unit chemical structure. Patterning of the polymers with extreme UV lithography has been achieved by taking advantage of direct photoinduced chain scission of the polymer chains, which results in a molecular-weight based solubility switch. After selective development of the irradiated regions of the polymers, feature sizes as small as 28.6 nm have been printed and the importance of resist-developer interactions for maximizing image quality has been demonstrated.
Resumo:
Some initial EUVL patterning results for polycarbonate based non-chemically amplified resists are presented. Without full optimization the developer a resolution of 60 nm line spaces could be obtained. With slight overexposure (1.4 × E0) 43.5 nm lines at a half pitch of 50 nm could be printed. At 2x E0 a 28.6 nm lines at a half pitch of 50 nm could be obtained with a LER that was just above expected for mask roughness. Upon being irradiated with EUV photons, these polymers undergo chain scission with the loss of carbon dioxide and carbon monoxide. The remaining photoproducts appear to be non-volatile under standard EUV irradiation conditions, but do exhibit increased solubility in developer compared to the unirradiated polymer. The sensitivity of the polymers to EUV light is related to their oxygen content and ways to increase the sensitivity of the polymers to 10 mJ cm-2 is discussed.
Resumo:
Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.
Resumo:
Many user studies in Web information searching have found the significant effect of task types on search strategies. However, little attention was given to Web image searching strategies, especially the query reformulation activity despite that this is a crucial part in Web image searching. In this study, we investigated the effects of topic domains and task types on user’s image searching behavior and query reformulation strategies. Some significant differences in user’s tasks specificity and initial concepts were identified among the task domains. Task types are also found to influence participant’s result reviewing behavior and query reformulation strategies.
Resumo:
A broad range of positions is articulated in the academic literature around the relationship between recordings and live performance. Auslander (2008) argues that “live performance ceased long ago to be the primary experience of popular music, with the result that most live performances of popular music now seek to replicate the music on the recording”. Elliott (1995) suggests that “hit songs are often conceived and produced as unambiguous and meticulously recorded performances that their originators often duplicate exactly in live performances”. Wurtzler (1992) argues that “as socially and historically produced, the categories of the live and the recorded are defined in a mutually exclusive relationship, in that the notion of the live is premised on the absence of recording and the defining fact of the recorded is the absence of the live”. Yet many artists perform in ways that fundamentally challenge such positions. Whilst it is common practice for musicians across many musical genres to compose and construct their musical works in the studio such that the recording is, in Auslander’s words, the ‘original performance’, the live version is not simply an attempt to replicate the recorded version. Indeed in some cases, such replication is impossible. There are well known historical examples. Queen, for example, never performed the a cappella sections of Bohemian Rhapsody because it they were too complex to perform live. A 1966 recording of the Beach Boys studio creation Good Vibrations shows them struggling through the song prior to its release. This paper argues that as technology develops, the lines between the recording studio and live performance change and become more blurred. New models for performance emerge. In a 2010 live performance given by Grammy Award winning artist Imogen Heap in New York, the artist undertakes a live, improvised construction of a piece as a performative act. She invites the audience to choose the key for the track and proceeds to layer up the various parts in front of the audience as a live performance act. Her recording process is thus revealed on stage in real time and she performs a process that what would have once been confined to the recording studio. So how do artists bring studio production processes into the live context? What aspects of studio production are now performable and what consistent models can be identified amongst the various approaches now seen? This paper will present an overview of approaches to performative realisations of studio produced tracks and will illuminate some emerging relationships between recorded music and performance across a range of contexts.
Resumo:
We apply Lazear’s jack-of-all-trades theory to investigate the effect of nascent entrepreneurs´ balanced skill set across various functional areas on the performance of nascent projects. Analyzing longitudinal data on innovative nascent projects, we find that nascent entrepreneurs with a more balanced skill set are more successful in that they progress faster in the venture creation process.