977 resultados para Elemental sulfur
Resumo:
The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of <1 Ma peridotites at Hess Deep occurred at high temperatures (200°-400°C) and low water/rock ratios. Oxidation of ferrous iron to magnetite maintained low fO2 and produced a reduced, low-sulfur assemblage including NiFe alloy. Small amounts of sulfate reduction by thermophilic microbes occurred as the system cooled, producing low-delta34S sulfide (1.5? to -23.7?). In contrast, serpentinization of Iberian Margin peridotites occurred at low temperatures(~20°-200°C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-delta34S sulfide (~15 to ~43?) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high delta34S of total sulfur (mean ~8?). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in delta34S of total sulfur (mean ~ -5?). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 * 10**12 g S/yr from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.
Resumo:
During ODP Leg 111 Hole 504B was extended 212 m deeper into the sheeted dikes of oceanic Layer 2, for a total penetration of 1288 m within basement. Study of the mineralogy, chemistry, and stable isotopic compositions of the rocks recovered on Leg 111 has confirmed and extended the previous model for hydrothermal alteration at the site: axial greenschist hydrothermal metamorphism was followed by seawater recharge and subsequent off-axis alteration. The dikes are depleted in 18O (mean delta18O = +5.1 ? +/- 0.6 ?) relative to fresh mid-ocean ridge basalt. Oxygen isotopic data on whole rocks and isolated secondary minerals indicate temperatures during axial metamorphism of 250°-350°C and water/rock ratios about one. Increasing amounts of actinolite with depth in the dike section, however, suggest that temperatures increased downward in the dikes. Pyrite + pyrrhotite + chalcopyrite + magnetite was the stable sulfide + oxide mineral assemblage during axial alteration, but these minerals partly re-equilibrated later at temperatures less than 200°C. The dikes sampled on Leg 111 contain an average of 500 ppm sulfur, slightly lower than igneous values. The delta34S values of sulfide average 0?, which indicates the presence of basaltic sulfide and incorporation of little or no seawater-derived sulfide into the rocks. These data are consistent with models for the presence of rock-dominated sulfur in deep hydrothermal fluids. The presence of anhydrite at 1176 m within basement indicates that unaltered seawater can penetrate to significant depths in the crust during recharge.
Resumo:
The first data on content of inorganic reduced sulfur compounds [H2S, S°, S2O3(2-), SO3(2-)] were obtained at two stations in the northeastern Levant Sea (Mediterranean Basin). With lower detection limit for the mentioned sulfur forms of 30 nM, sulfide forms were not found, while thiosulfate concentration varied from 178 to 890 nM (from 24 to 78 % of total reduced S), and S° varied from 156 to 1090 nM. Vertical distribution of these compounds showed irregular character; correlation between total reduced S maxima, fluorescence, and increase of nutrient element content near the lower pycnocline boundary was observed. The maximum total sulfur concentration in the surface layer was likely due an anthropogenic influence. The ''starting'' mechanism that controls appearance and distribution of sulfur compounds in oxygen-containing water is the process of bacterial sulfate reduction in micropatches of fresh organic detritus. Reduced sulfur forms participate further in a series of chemical and biochemical processes. Contribution of hydrolysis of organic sulfur-containing compounds is insignificant for the region in study.
Resumo:
Alpine glacier samples were collected in four contrasting regions to measure supraglacial dust and debris geochemical composition. A total of 70 surface glacier ice, snow and debris samples were collected in 2009 and 2010 in Svalbard, Norway, Nepal and New Zealand. Trace elemental abundances in snow and ice samples were measured via inductively coupled plasma mass spectrometry (ICP-MS). Supraglacial debris mineral, bulk oxide and trace element composition were determined via X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF). A total of 45 elements and 10 oxide compound abundances are reported. The uniform data collection procedure, analytical measurement methods and geochemical comparison techniques are used to evaluate supraglacial dust and debris composition variability in the contrasting glacier study regions. Elemental abundances revealed sea salt aerosol and metal enrichment in Svalbard, low levels of crustal dust and marine influences to southern Norway, high crustal dust and anthropogenic enrichment in the Khumbu Himalayas, and sulfur and metals attributed to quiescent degassing and volcanic activity in northern New Zealand. Rare earth element and Al/Ti elemental ratios demonstrated distinct provenance of particulates in each study region. Ca/S elemental ratio data showed seasonal denudation in Svalbard and Norway. Ablation season atmospheric particulate transport trajectories were mapped in each of the study regions and suggest provenance pathways. The in situ data presented provides first order glacier surface geochemical variability as measured from four diverse alpine glacier regions. This geochemical surface glacier data is relevant to glaciologic ablation rate understanding as well as satellite atmospheric and land-surface mapping techniques currently in development.
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.
Resumo:
Primary and secondary mineral phases from Holes 1268A (11 samples), 1272A (9 samples), and 1274A (12 samples) were analyzed by electron microprobe in Bonn and Cologne (Germany). Bulk rock powders of these samples were also analyzed geochemically, including major and trace elements (Paulick et al., 2006, doi:10.1016/j.chemgeo.2006.04.011). Ocean Drilling Program (ODP) Leg 209 Holes 1268A, 1272A, and 1274A differ remarkably in alteration intensity and mineralogy, and details regarding their lithologic characteristics are presented in Bach et al. (2004, doi:10.1029/2004GC000744) and Shipboard Scientific Party (2004, doi:10.2973/odp.proc.ir.209.101.2004). Because of the least altered character of peridotite in Hole 1274A, abundant clinopyroxene, orthopyroxene, olivine, and spinel were analyzed at this site. In Hole 1272A, primary silicates are rare and analyses were restricted to some samples that contain traces of olivine and orthopyroxene. Because of the intensity of alteration, Hole 1268A is devoid of primary phases except spinel. Commonly, alteration is pseudomorphic and serpentinization of olivine and orthopyroxene can be distinguished. Accordingly, compositional variations of the alteration minerals with regard to the precursor minerals are one of the issues investigated in this data report.
Resumo:
An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of Recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modem sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of the foraminifera. It is suggested that the changes reflect both global changes in the relative proportions of Nd and Sr derived from continental input and from the weathering of volcanic debris together with short term and local variations to which the Sr curve is insensitive, reflecting the different response times of the two elements to changes in oceanic input functions. The Nd isotope curve appears to be a potentially useful tracer of ocean palaeochemistry.
Resumo:
The sulfur contents of 21 basalt samples from four DSDP Leg 82 holes were determined and the isotopic compositions of sulfur were measured on 15 of them. Most of the basalts are altered and have sulfur contents of about 100 ppm. Isotopic ratios for sulfate and total sulfur range from +0.7 to +10.5 per mil, indicating almost complete leaching of the igneous sulfide in low-sulfur samples by alteration. Total sulfur content of some samples ranges between 960 and 1170 ppm, somewhat higher than expected for tholeiitic basalts. The isotope ratios of total sulfur in these samples are slightly shifted to values heavier than the generally assumed mantle ratio of zero, and this shift is thought to result from a secondary source of sulfur.