993 resultados para Electrophoresis, Agar Gel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid and cost effective DNA test is described to identify European eel (Anguilla anguilla) and North American eel (Anguilla rostrata). By means of polymerase chain reaction (PCR) technique parts of the mitochondrial cytochrome b gene are amplified with species specific primers which are designed to produce PCR fragments of different characteristic sizes for European and American eel. The size differences can easily be made visible by agarose gel electrophoresis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of chemical pollutants can be found in the marine environment. So it is necessary to obtain informations about the toxic effects of this contaminant mixtures in general and especially on single cell level. We used an organic extract of a marine sediment from the North Sea to investigate its cyto- and genotoxicity with an in vitro system, the comet assay or single cell gel electrophoresis (SCGE). The comet assay can be applied for estimating genotoxic effects of chemicals on single cell level. First results confirm the sensitivity of this assay and its applicability in assessing genotoxic load in environmental samples. A permant cell line, the EPC (Ephithelioma papulosum cyprini) was used for the experiments. It was possible to demonstrate the suitability of this in vitro test system for assessing genotoxic and cytotoxic effects of marine sediment extracts on EPC cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was < 5 nM, and that of the MCCD was 0.1 mu M. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligonucleotide-directed triple helix formation is one of the most versatile methods for the sequence specific recognition of double helical DNA. Chapter 2 describes affinity cleaving experiments carried out to assess the recognition potential for purine-rich oligonucleotides via the formation of triple helices. Purine-rich oligodeoxyribonucleotides were shown to bind specifically to purine tracts of double helical DNA in the major groove antiparallel to the purine strand of the duplex. Specificity was derived from the formation of reverse Hoogsteen G•GC, A•AT and T•AT triplets and binding was limited to mostly purine tracts. This triple helical structure was stabilized by multivalent cations, destabilized by high concentrations of monovalent cations and was insensitive to pH. A single mismatched base triplet was shown to destabilize a 15 mer triple helix by 1.0 kcal/mole at 25°C. In addition, stability appeared to be correlated to the number of G•GC triplets formed in the triple helix. This structure provides an additional framework as a basis for the design of new sequence specific DNA binding molecules.

In work described in Chapter 3, the triplet specificities and required strand orientations of two classes of DNA triple helices were combined to target double helical sequences containing all four base pairs by alternate strand triple helix formation. This allowed for the use of oligonucleotides containing only natural 3'-5' phosphodiester linkages to simultaneously bind both strands of double helical DNA in the major groove. The stabilities and structures of these alternate strand triple helices depended on whether the binding site sequence was 5'-(purine)_m (pyrimidine)_n-3' or 5'- (pyrimidine)_m (purine)_n-3'.

In Chapter 4, the ability of oligonucleotide-cerium(III) chelates to direct the transesterfication of RNA was investigated. Procedures were developed for the modification of DNA and RNA oligonucleotides with a hexadentate Schiff-base macrocyclic cerium(III) complex. In addition, oligoribonucleotides modified by covalent attachment of the metal complex through two different linker structures were prepared. The ability of these structures to direct transesterification to specific RNA phosphodiesters was assessed by gel electrophoresis. No reproducible cleavage of the RNA strand consistent with transesterification could be detected in any of these experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.

This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.

One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.

One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.

Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.

As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.

Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.

We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.

We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.

In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excited-state properties of trans-ReO2(py)4+ (ReO2+) in acetonitrile solution have been investigated. The excited-state absorption spectrum of ReO2+ is dominated by bleaching of the ground state MLCT and d-d systems. The reduction potential of ReO22+/+* is estimated from emission and electrochemical data to be -0.7 V (SSCE). The ReO2+ excited state efficiently reduces methylviologen and other pyridinium and olefin acceptors. The resulting Re(VI) species oxidizes secondary alcohols and silanes. Acetophenone is the product of sec-phenethyl alcohol oxidation.

The emission properties of ReO2+ in aqueous solutions of anionic and nonionic surfactants have been investigated. The emission and absorption maxima of ReO2+ are dependent on the water content of its environment. Emission lifetimes vary over four orders of magnitude upon shifting from aqueous to nonaqueous environments. The emission lifetime has a large (8.6) isotope effect (k(H2O)/k(D2O)) that reflects its sensitivity towards the environment. These properties have been used to develop a model for the interactions of ReO2+ with sodium dodecyl sulfate (SDS). A hydrophobic ReO2+ derivative, ReO2(3-Ph-py)4+, has been used to probe micelles of nonionic surfactants, and these results are consistent with those obtained with SDS.

The emission properties of ReO2+ in Nafion perfluorosulfonated membranes have been investigated. Absorption and emission spectroscopy indicate that the interior of the membrane is quite polar, similar to ethylene glycol. Two well-resolved emission components show different lifetimes and different isotope effects, indicative of varying degrees of solvent accessibility. These components are taken as evidence for chemically distinct regions in the polymer film, assigned as the interfacial region and the ion cluster region.

The unsubstituted pyridine complex shows monophasic, τ = 1.7 µs, emission decay when bound to calf thymus DNA. Switching to the 3-Ph-py complex yields a biphasic emission decay (τ1 = 2.4 µs, τ2 = 10 µs) indicative of an additional, solvent-inaccessible binding mode. Photoinduced electron transfer to methylviologen leads to oxidative cleavage of the DNA as detected by gel electrophoresis. Electrochemical and spectrophotometric techniques used with organic substrates also can be used to monitor the oxidation of DNA. Abstraction of the ribose 4' hydrogen by ReO22+ is a possible mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.

In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.

In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.

One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.

The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA in canned tuna is degraded into short fragments of a rew hundred base pairs. The polymerase chain reaction (PCR) was used to amplify short sequences of mitochondrial DNA, which were denatured and analysed by polyacrylamide gel electrophoresis (native PAGE) for detection of single strand conformation polymorphisms. Species specific patterns of DNA bands were obtained for a number of tuna and bonito species. DE: In Thunfischkonserven liegt die DNA in Form kurzkettiger Fragmente von wenigen Hundert Basenpaaren Länge vor. Mit Hilfe der Polymerase-Kettenreaktion (PCR) wurden kurze Sequenzen der mitochondrialen DNA vervielfältigt. Anschließend wurde die gebildete DNA in Einzelsträngen überführt, die durch eine native Polyacrylamidgel-Elektrophorese (PAGE) aufgetrennt wurde. Für eine Reihe von Thunfischen und Boniten ergaben die Einzelstränge artspezifische Bandenmuster, die auf unterschiedliche Konformationen der DNA-Stränge der einzelnen Fischarten zurückzuführen sind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal complexes that utilize the 9,10-phenanthrene quinone diimine (phi) moiety bind to DNA through the major groove. These metallointercalators can recognize DNA sites and perform reactions on DNA as a substrate. The site-specific metallointercalator Λ-1-Rh(MGP)_2phi^(5+) competitively disrupts the major groove binding of a transcription factor, yAP-1, from an oligonucleotide that contains a common binding site. The demonstration that metal complexes can prevent transcription factor binding to DNA site-specifically is an important step in using metallointercalators as therapeutics.

The distinctive photochemistry of metallointercalators can also be applied to promote long range charge transport in DNA. Experiments using duplexes with regions 4 to 10 nucleotides long containing strictly adenine and thymine sequences of varying order showed that radical migration is more dependent on the sequence of bases, and less dependent on the distance between the guanine doublets. This result suggests that mechanistic proposals of long range charge transport must involve all the bases.

RNA/DNA hybrids show charge migration to guanines from a remote site, thus demonstrating that nucleic acid stacking other than B-form can serve as a radical bridge. Double crossover DNA assemblies also provide a medium for charge transport at distances up to 100 Å from the site of radical introduction by a tethered metal complex. This radical migration was found to be robust to mismatches, and limited to individual, electronically distinct base stacks. In single DNA crossover assemblies, which have considerably greater flexibility, charge migration proceeds to both base stacks due to conformational isomers not present in the rigid and tightly annealed double crossovers.

Finally, a rapid, efficient, gel-based technique was developed to investigate thymine dimer repair. Two oligonucleotides, one radioactively labeled, are photoligated via the bases of a thymine-thymine interface; reversal of this ligation is easily visualized by gel electrophoresis. This assay was used to show that the repair of thymine dimers from a distance through DNA charge transport can be accomplished with different photooxidants.

Thus, nucleic acids that support long range charge transport have been shown to include A-track DNA, RNA/DNA hybrids, and single and double crossovers, and a method for thymine dimer repair detection using charge transport was developed. These observations underscore and extend the remarkable finding that DNA can serve a medium for charge transport via the heteroaromatic base stack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A excreção urinária de glicosaminoglicanos (GAG) está alterada em várias patologias do trato urinário; o padrão de excreção pode estar associado com o estado da doença. A excreção urinária de GAG em crianças com bexiga neurogênica (BN) secundária a mielomeningocele (MMC) pode também estar alterada, mas até a presente data não há detalhamento epidemiológico dos pacientes e não se correlacionou o padrão de excreção com grau de disfunção vesical. Analisamos a excreção urinária de um grupo bem definido de crianças com MMC e correlacionamos os resultados com escore cistométrico. As amostras de urina de 17 pacientes com MMC, 10 meninos e 7 meninas (média de idade DP de 4,6 2,9 anos) foram obtidas durante o exame cistométrico. As amostras do grupo controle foram obtidas de 18 crianças normais, 13 meninos e 5 meninas (6,9 2,2 anos). Todas as crianças não estavam com infecção urinária, tinham função renal normal e não estavam sob tratamento farmacológico. A quantificação do GAG urinário total foi expressa em μg de ácido hexurônico / mg de creatinina e a proporção dos diferentes tipos de GAGs sulfatados foi obtida por eletroforese em gel de agarose. A avaliação cistométrica foi realizada utilizando aparelho de urodinâmica Dynapack modelo MPX816 (Dynamed, São Paulo, Brasil), a partir da qual o escore cistométrico foi calculado de acordo com procedimento recente publicado. [14]. Não observamos diferença significativa na excreção urinária de GAG total entre meninos e meninas tanto no grupo com MMC ( 0,913 0,528 vs 0,867 0,434, p>0,05) como no grupo controle (0,546 0,240 vs 0,699 0,296, p>0,05). Os resultados mostraram também que a excreção de GAG urinário não se correlacionou com a idade tanto no grupo com MMC ( r = -0,28, p> 0,05) como no grupo controle (r = -0,40, p> 0,05). Entretanto, a comparação dos dois grupos mostrou que o grupo com MMC excretava 52% a mais de GAG total que o grupo controle (0,894 0,477 vs 0,588 0,257, p <0,04). Nesses pacientes a excreção de GAG total não se correlacionou com a complacência vesical isoladamente (r = -0,18, p> 0,05) mas foi significativa e negativamente correlacionada ao escore cistométrico (r= -0,56, p<0,05). Em média, os pacientes com piores escores (<9) excretaram 81% a mais de GAG que os pacientes com melhor escore (>9) (1,157 0,467 vs 0,639 0,133, p<0,04). O sulfato de condroitin foi o GAG sulfatado predominante nos grupos neurogênico e controles (92,5 7,6% vs 96,4 4,8%, respectivamente, p> 0,05), enquanto o sulfato do heparan estava presente em quantidades marcadamente menores; o dermatam sulfato não foi detectado. A excreção urinária de GAG em pacientes com MMC é significativamente maior que a excreção das crianças normais e os altos valores encontrados estão correlacionados a um maior compromentimento da função vesical. Evidências em modelos animais com MMC induzida sugerem que alterações no detrusor estão associadas a um elevado turnover da matriz extra celular (MEC) vesical, o que pode explicar a elevada excreção de GAG nos pacientes com MMC. Além disso, esses resultados indicam que a excreção urinária de GAG pode ser usada como fator adjuvante para a caracterização da disfunção vesical em pacientes com MMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complacência da bexiga depende de músculos lisos, fibras colágenas, fibras elásiticas e suas relações. O objetivo deste trabalho é determinar a composição da matriz extracelular em amostras de bexigas normais através de análise bioquímica de colágeno e glicosaminoglicanos em amostras obtidas de mulheres em diferentes grupos de idade, analisando separadamente as camadas urotelial e muscular. Avaliamos 17 amostras de bexiga divididas em três grupos: infância (N=5), menacme (N=6) e pós-menopausa (N=6). As bexigas foram analisadas para concentração de GAG total e colágeno e para análise qualitativa de GAG por eletroforese em gel de agarose. Na camada muscular, não houve diferença entre os grupos tanto para GAG quanto para colágeno. Na camada urotelial, a análise da concentração de colágeno não mostrou diferença entre os grupos, mas a concentração de GAG no grupo da pós-menopausa (0.21 0.12 μg de ácido hexurônico/mg de tecido seco) apresentou diferença em relação aos grupos do menacme (1.78 1.62 μg de ácido hexurônico/mg de tecido seco) e da infância ( 2.29 1.32 μg de ácido hexurônico/mg de tecido seco).Nosso trabalho concluiu que a concentração de GAG está substancialmente diminuída na camada urotelial da bexiga de mulheres na pós-menopausa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.

To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.

The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A periodontite é um processo inflamatório crônico de origem bacteriana mediado por citocinas, em especial, interleucina-1 (IL1) e fator de necrose tumoral (TNFα). Polimorfismos genéticos de IL1 e TNFA têm sido associados com a variação de expressão dessas proteínas, o que poderia justificar as diferenças interindividuais de manifestação da doença. O objetivo do presente estudo foi investigar possíveis associações entre os genes IL1B, IL1RN e TNFA e a suscetibilidade à periodontite agressiva e à periodontite crônica severa. Foram selecionados 145 pacientes do Estado do Rio de Janeiro, 43 com periodontite agressiva (PAgr) (33,1 4,8 anos), 52 com periodontite crônica severa (PCr) (50,6 5,8 anos) e 50 controles (40,1 7,8 anos). Os DNAs genômicos dos integrantes dos grupos PAgr, PCr e controle foram obtidos através da coleta de células epiteliais bucais raspadas da parte interna da bochecha com cotonete. Os SNPs IL1B -511C>T, IL1B +3954C>T e TNFA -1031T>C foram analisados pela técnica de PCR-RFLP, utilizando as enzimas de restrição Ava I Taq I e Bpi I, respectivamente. O polimorfismo de número variável de repetições in tandem (VNTR) no intron 2 do gene IL1RN foi feita pela análise direta dos amplicons. Todos os polimorfismos foram analisados por eletroforese em gel de poliacrilamida 8%. As frequências alélica e genotípica do polimorfismo IL1B +3954C>T no grupo PCr foram significativamente diferentes das observadas no grupo controle (p=0,003 e p=0,041, respectivamente). A freqüência do alelo A2 do polimorfismo IL1RN VNTR intron2 no grupo PAgr foi significativamente maior do que no grupo controle (p=0,035). Não houve associação entre os polimorfismos IL1B -511C>T e TNFA -1031T>C e as periodontites agressiva e crônica. A presença dos alelos 2 nos genótipos combinados de IL1RN VNTR intron2 e IL1B +3954C>T no grupo PCr foi significativamente maior quando comparada ao grupo controle (p=0,045). Entretanto, não se observou associação entre as combinações genotípicas IL1B -511C>T / IL1B +3954C>T e IL1RN VNTR / IL1B -511C>T e a predisposição à doença periodontal. De acordo com os nossos resultados podemos sugerir que, para a população estudada, o polimorfismo IL1B +3954C>T interfere no desenvolvimento da periodontite crônica, enquanto a presença do alelo A2 do polimorfismo IL1RN VNTR intron2 pode ser considerado como indicador de risco para a periodontite agressiva. O presente estudo também nos permite sugerir que a ausência de homozigose dos alelos 1 nos genótipos combinados de IL1RN VNTR intron2 e IL1B +3954C>T pode representar maior suscetibilidade à periodontite crônica severa.