952 resultados para Electron-microscope Investigations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The graft copolymer of high impact polystyrene (HIPS) grafted with malice anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by IR analyses and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5 wt% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with the PA6 during melt mixing the two components. The compatibility of HIPS-g-MA in the HIPS/PA6 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical properties of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA6. The tensile mechanical properties of the prepared blends were investigated and the fracture surfaces of the blends were examined by means of the scanning electron microscope (SEM). The improved adhesion in a 16%HIPS/75%PA6 blend with 9%HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA6 connecting HIPS particles was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Initiation and termination of crazes in high impact polystyrene (HIPS) were studied by transmission electron microscope. Instead of the first initiation of crazes in the vicinity of the equator or rubber particles, ribbon-shaped crazes beyond the region were observed on the TEM photos. The starting point and the end point of each ribbon were noticed not to be randomly located on the surface of the cellar particles in HIPS. The spots connecting to the ligaments between the PS rigid inclusions in the cellar particle are found to be the locations where crazes were initiated and terminated preferentially. In addition, the crazes generated at those spots were much thicker and longer. The thoughness of high impact polystyrene was enhanced by the multiple crazes formed in the matrices, through the reduction of the craze stress at room temperature with increasing the volume fraction of polybutadiene at these spots in the dispersed phase. These results conducted that not only the cell structure of the domains in HIPS was not homogeneous but also the polybutadiene ligaments between PS rigid inclusions in the domains were inhomogeneous. Therefore, the responsibility of those polybutadiene ligaments with different thickness to the stresses was different and it forced the crazing initiation and growing preferentially. The crazes were created in some regions in the matrices; On the contrary, rare crazes were formed in the other regions in spite of these regions surrounded around the same dispersed particles. The relation between the spots on the surface and the inner structure of the cellar particle was discussed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The morphology of films of isotactic polypropylene poly (3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields has been investigated by using scanning electron microscope. The experiment results show that the micro-crystal morphology of polymer films was strongly dependent on electrostatic fields. It was found that the effect of the electrostatic field led to the formation of dendrite crystals aligned in the field direction, and some branches of P3DDT ruptured. However, the micro-crystals in these films grew into spherulites without electrostatic field,and have no crystal orientation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The micro-crystal morphology of the films of isotactic polypropylene (iPP), poly(3-dodecylthiophene) (P3DDT) and iPP/P3DDT blend grown in different electrostatic environments has been investigated by using scanning electron microscope. The experimental results show that the micro-crystal morphology of polymer films was strongly dependent on electrostatic field. It was found that the micro-crystal morphology of the films of iPP, P3DDT and iPP/P3DDT blend grown in the electrostatic field was in the form of dendrite crystals, in which main stems were aligned in the field direction, and some branches of P3DDT were ruptured. However, the micro-crystals of the films of iPP, P3DDT and iPP/P3DDT blend have no crystal orientation in the absence of electrostatic field. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Controlled crystallization of BaF2 under two different kinds of monolayers, octadecylamine [CH3(CH2)(17)NH2] and hexadecanol [CH3(CH2)(14)CH2OH], has been studied by using x-ray diffraction (XRD) and scanning electron microscope. It was found that the monolayer headgroup, the degree of ionization of the headgroup, etc., had a complicated effect on the selectivity of monolayers for crystal and on the morphology and orientation of crystals grown under the compressed monolayers. At pH = 7.0, XRD analysis showed that (100)-oriented BaF2 crystals were formed under the octadecylamine monolayer, while several kinds of crystals were found under the hexadecanol monolayer. In comparison, at pH = 8.5, both (100)-oriented BaF2 and (111)-oriented Ba(NO3)(2) crystals were obtained under the monolayer of octadecylamine. However, crystals formed under hexadecanol monolayer consist of BaF2, Ba(NO3)(2), etc. The detailed mechanism for crystallization was discussed in terms of the specific interaction and lattice matching between the monolayer headgroup and the nucleating species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly (ethylene oxide) (PEO) and poly (trimethopropane trimethacrylate) (PTMPTMA) interpenetrate networks have been synthesized. The confined crystallization behavior of PEO in the PTMTYTMA networks has been investigated by a differential scanning calorimeter and scanning electron microscope. The degree of PEO crystallinity in PEO/PTMPTMA interpenetrate networks reduces with the increase of PTMPTMA. PEO is in an amorphous state when the concentration of PEO is lower than 50% in the interpenetrate networks system. The melting points of crystalline PEO in the networks are lower than that of pure PEG, and the melting point of PEO in the networks is higher and increases with the increase of PEO in the interpenetrate networks. Wide-angle X-ray diffraction results show that the PEO crystallite size perpendicular to the (120) plane is not affected as much as PEO in silica networks. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The graft copolymer of high-impact polystyrene (HIPS) grafted with maleic anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by infrared analyses, and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with polyamide 1010 (PA1010) during melt mixing of the two components. The compatibility of HIPS-g-MA. in the HIPS/PA1010 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical behavior of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA1010. The tensile mechanical properties of the prepared blends were investigated, and the fracture surfaces of the blends were examined by means of the scanning electron microscope. The improved adhesion in a 15% HIPS/75% PA1010 blend with 10% HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA1010 connecting HIPS particles was observed. (C) 1999 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blends of linear low-density polyethylene (LLDPE) and a diblock copolymer of hydrogenated polybutadiene and methyl methacrylate [P(HB-b-MMA)] were studied by transimission electron microscope (TEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD). At 10 wt% block copolymer content, block copolymer chains exist as spherical micelles and cylindrical micelles in LLDPE matrix. At 50 wt% block copolymer content, block copolymer chains mainly form cylindrical micelles. The core and corona of micelles consist of PMMA and PHB blocks, respectively. DSC results show that the total enthalpy of crystallization of the blends varies linearly with LLDPE weight percent, indicating no interactions in the crystalline phase. In the blends, no distortion of the unit cell is observed in WAXD tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel engineering thermoplastic, phenolphthalein poly (ether-ether-sulfone) (PES-C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheometrics dynamic spectrometer (RDS-I) and a CEAST capillary rheometer, a rheoscope 1000 were employed to investigate the melt rheology and extrusion behaviour at both the low and high shearing rates. The morphologies of the blends under different shearing were observed with a scanning electron microscope(SEM) and correlated to the observed rheology. The principal normal stress differences measured with cone-and-plate geometry give a temperature-independent correlation for both blend and PES-C when they are plotted against shear stress. But the extrudate swell of the blends showed a strong temperature dependence at each shear stress. The concentration dependence of extrudate swell shows a contrary behaviour to that of the inorganic filled system. A reasonable hypothesis based on the relaxation and disorientation of TLCP during flowing in the capillary and exiting was given to explain it. The melt fracture was checked after extrusion from capillary and was discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanical properties of wollastonite-filled phenolphthalein poly(ether ketone) (PEK-C) composites have been studied at room temperature and 200 degrees C. The dispersion of wollastonite particles in PEK-C matrix were investigated by means of scanning electron microscope. The modulus and strength of the composites increased with filler content. The reinforced effect of wollastonite on PEK-C is more marked at elevated temperature. The glass transition temperature of the composites is higher than that of PEK-C and is independent of filler content. The restriction effect of tiller particles on the molecular mobility of the polymer matrix should be attributed to the reinforcement. (C) 1997 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The morphology of polyamidelOlO/polypropylene blends was found to significantly depend upon the concentration of the compatibilizer[polypropylene-grafted-acrylic acid (PP-g-AA)]. A significant reduction in phase size was observed because of the interaction that existed between the PP-g-AA and polyamide. These interactions have been confirmed by several methods. The tensile mechanical properties and impact behavior of the prepared blends were investigated and correlated with scanning electron microscope (SEM) analysis of the fracture surfaces. It was found that PP-g-AA as the compatibilizer has a profound effect upon the properties of the blends. This behavior is attributed to a series of chemical and physico-chemical interactions taking place between the two components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanical properties of glass fiber-reinforced phenolphthalein poly(ether ketone)/poly(phenylene sulfide) (PEK-C/PPS) composites have been studied. The morphologies of fracture surfaces were observed by scanning electron microscope. Blending a semicrystalline component, PPS, can improve markedly the mechanical properties of glass fiber-reinforced PEK-C composites. These results can be attributed to the improvement of fiber/matrix interfacial adhesion and higher fiber aspect ratio. (C) 1996 John Wiley & Sons, Inc.