944 resultados para Electron energy levels
Resumo:
The electronic structure of crystalline Y2O3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom-and orbital-resolved partial DOS. effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Gamma is obtained which increases with pressure at a rate of dE(g)/dP = 0.012 eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y2O3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of epsilon(O)= 3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Gamma between the top of the valence band and the bottom of the conduction band may be symmetry forbidden.
Resumo:
A numerical analysis of an electron waveguide coupler based on two quantum wires coupled by a magnetically defined barrier is presented with the use of the scattering-matrix method. For different geometry parameters and magnetic fields, tunneling transmission spectrum is obtained as a function of the electron energy. Different from that of conventional electron waveguide couplers, the transmission spectrum of the magnetically coupled quantum wires does not have the symmetry with regard to those geometrically symmetrical ports, It was found that the magnetic field in the coupling region drastically enhances the coupling between the two quantum wires for one specific input port while it weakens the coupling for the other input port. The results can be well understood by the formation of the edge states in the magnetically defined barrier region. Thus, whether these edge states couple or decouple to the electronic propagation modes in the two quantum wires, strongly depend on the relative moving directions of electrons in the propagating mode in the input port and the edge states in the magnetic region. This leads to a big difference in transmission coefficients between two quantum wires when injecting electrons via different input ports. Two important coupler specifications, the directivity and uniformity, are calculated which show that the system we considered behaves as a good quantum directional coupler. (C) 1997 American Institute of Physics.
Resumo:
The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143025]
Resumo:
Based on the phase-conjugate polarization interference between two one-photon processes. When the laser has broadband linewidth, the sum-frequency polarization beat (SFPB) signal shows the autocorrelation of SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum-frequency of energy-levels. It hits been also found that the asymmetric behaviors of the polarization beat signals result from the unbalanced dispersion effects, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Based on the phase-conjugate polarization interference between two two-photon processes, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the four-level attosecond sum-frequency polarization beat (FASPB) in the extremely Doppler-broadened limit. The homodyne-detected FASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light fields with arbitrary bandwidth. The different roles of the amplitude fluctuations and the phase fluctuations can be understood physically in the time-domain picture. The field correlation has a weak influence on the FASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the FASPB signal shows resonant-nonresonant cross-correlation, and drastic difference for three Markovian stochastic fields. The maxima of the two two-photon signals are shifted from zero time delay to the opposite direction, and the signal exhibits damping oscillation when the laser frequency is off-resonant from the two-photon transition. A Doppler-free precision in the measurement of the energy-level sum can be achieved with an arbitrary bandwidth. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels.
Resumo:
Based on the phase-conjugate polarization interference between two-pathway excitations, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the V three-level sum-frequency polarization beat (SFPB) in attosecond scale. Novel interferometric oscillatory behavior is exposed in terms of radiation-radiation, radiation-matter, and matter-matter polarization beats. The phase-coherent control of the light beams in the SFPB is subtle. When the laser has broadband linewidth, the homodyne detected SFPB signal shows resonant-nonresonant cross correlation, a drastic difference for three Markovian stochastic fields, and the autocorrelation of the SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels. It has been also found that the asymmetric behaviors of the polarization beat signals due to the unbalanced controllable dispersion effects between the two arms of interferometer do not affect the overall accuracy in case using the SFPB to measure the Doppler-free energy-level sum of two excited states.
Resumo:
The nonlinear optical absorption in a three-subband step asymmetric semiconductor quantum well driven by a strong terahertz (THz) field is investigated theoretically by employing the intersubband semiconductor-Bloch equations. We show that the optical absorption spectrum strongly depends on the intensity, frequency, and phase of the pump THz wave. The strong THz field induces THz sidebands and Autler-Townes splitting in the probe absorption spectrum. Varying the pump frequency can bring not only the new absorption peaks but also the changing of the energy separation of the two higher-energy levels. The dependence of the absorption spectrum on the phase of the pump THz wave is also very remarkable.
Resumo:
本论文系统地研究了稀土离子的4fN-1n'l'高激发组态能级问题。利用稀土光谱理论,推导了自由离子状态下的高激发组态4fN-1n'l'的能级表达式(包括电子的库仑和旋轨作用),编写了计算机程序,首次得到了660项4fN-1n'l'(n'l'=5d,6s,6p)组态主要较低能级的详细表达式,大大扩展了以往的计算结果。同时,具备了计算4fN-1n'l'组态的全部能级表达式的能力。利用复杂晶体的化学键介电理论,研究了基质中fN-15d组态能级移动和劈裂等问题,获得了如下创新性的成果:研究了晶体中稀土离子的4fN-15d组态的禁戒跃迁能级与允许跃迁能级之间的能级差变化现象。发现fd电子间库仑作用的交换积分项是能级差的主要作用并找到了在不同基质中影响能级差发生变化的因子:he=[Σfc(i)a(i)Q(i)2]1/2,可用来分析、确定和预测Dy3+,Tb3+在不同基质中的禁戒跃迁峰的能级位置,对其它稀土离子也具有一定的指导意义。通过对自由离子能级差问题的分析,发现对不同稀土离子,能级差随f电子的增加而减小的规律,这样,无论是从横向还是纵向都可以对稀土离子的能级差进行比较,相互确定。为分析光谱中的禁戒跃迁峰提供了理论依据。研究了晶体中Ce3+、Eu2+的4fN-15d组态能级中心下移现象,发现影响其发生变化的因素与能级差的相同,但两者具有不同的变化形式,前者与玩呈一级指数关系,后者与he呈线性关系。从指数关系式中推导得到的自由离子状态下能级中心位置与实验值吻合较好。当he趋向于极大值时,得到的Ce3+、Ey2+的4fN-15d组态能级中心极限值相应于离子所含电子动能的大小。研究了晶体中Ce3+、Eu2+的4fN-15d组态能级劈裂问题,结合实验结果,发现立方场下的能级劈裂与化学键的同极化作用能,中心离子的配位数,配体离子的有效电荷以及所成键的离子性相关,并具此得到一个劈裂因子参数:Fc=EhQfi/NFc与10Dq值呈现很好的线性关系。研究结果表明,无论是4fN-15d组态的能级劈裂还是能级中心下降问题,Ce3+、Eu2+两离子都可以表达成统一的形式,显示了环境因子he与劈裂因子Fc所具有的普适性,对其它稀土离子的4fN-1n'l,高激发组态能级同样也具有理论指导意义。
Resumo:
Co-doped In2O3 nanocrystals showing room-temperature ferromagnetism have been successfully prepared by a simple sol-gel synthesis route. The sample displays it clear ferromagnetism behavior above 300 K. Phase and structure analyses reveal that the nanocrystals are crystallized with Co ions substituted for In ions in the In2O3 matrix, and no trace of secondary phases or clusters is detected. The experimental results are explained theoretically by first-principles calculations based on density functional theory, which indicate that the native ferromagnetic behavior of Co-doped In2O3 could be mainly ascribed to the strong d-d coupling of the magnetic ions.
Resumo:
A two-dimensional atomic scattering theory is developed for scattering of electrons by a circularly symmetric quantum structure in the two-dimensional electron gas. It is found that the scattering cross section oscillates as a function of ka where k is the electron wave vector and a is the radius of the cylindrical potential barrier. If there is a quantum well inside the potential barrier, there appears a series of sharp resonant-tunneling peaks superposed on the original scattering-cross-section curves. The width of the resonant-tunneling peak depends sensitively on the thickness, the height of the potential barrier, and the electron energy.
Resumo:
The basic idea of a defect model of photoconversion by an oxygen impurity in semi-insulating GaAs, proposed in an earlier paper, is described in a systematic way. All experiments related to this defect, including high-resolution spectroscopic measurements, piezospectroscopic study, and recent measurements on electronic energy levels, are explained on the basis of this defect model. The predictions of the model are in good agreement with the experiments. A special negative-U mechanism in this defect is discussed in detail with an emphasis on the stability of the charge states. The theoretical basis of using a self-consistent bond-orbital model in the calculation is also given.
Resumo:
The electronic structures of quantum wires formed by lateral strain are studied in the framework of the effective-mass envelope-function method. The hole energy levels, wave functions, and optical transition matrix elements are calculated for the real quantum-wire structure, and the results are compared with experiment. It is found that one-dimensional confinement effects exist for both electronic and hole states related to the n (001) = 1 state. The lateral strained confinement causes luminescence-peak redshifts and polarization anisotropy, and the anisotropy is more noticeable than that in the unstrained case. The variation of hole energy levels with well widths in the [110] and [001] directions and wave vector along the [110BAR] direction are also obtained.
Resumo:
The times spent by an electron in a scattering event or tunnelling through a potential barrier are investigated using a method based on the absorption probabilities. The reflection and transmission times derived from this method are equal to the local Larmor times if the transmission and reflection probability amplitudes are complex analytic functions of the complex potential. The numerical results show that they coincide with the phase times except as the incident electron energy approaches zero or when the transmission probability is too small. If the imaginary potential covers the whole space the tunnelling times are again equal to the phase times. The results show that the tunnelling times based on absorption probabilities are the best of the various candidates.
Resumo:
An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.
Resumo:
We report the physical behavior of Ru atom in silicon in this paper. Two energy levels E(0.58) and H(0.34) were observed. The pure substitutional Ru in silicon was responsible for the H(0.34), and the E(0.58) was introduced by a complex of a Ru atom and a vacancy (or vacancies). By use of scattered wave-X-alpha (SW-X-alpha) cluster method the theoretical calculation of electronic states for substitutional Ru atom in silicon has been performed. The results obtained were compared with those of experimental measurements.