935 resultados para Electrical distribution planning
Resumo:
In this paper, to solve the reconfiguration problem of radial distribution systems a scatter search, which is a metaheuristic-based algorithm, is proposed. In the codification process of this algorithm a structure called node-depth representation is used. It then, via the operators and from the electrical power system point of view, results finding only radial topologies. In order to show the effectiveness, usefulness, and the efficiency of the proposed method, a commonly used test system, 135-bus, and a practical system, a part of Sao Paulo state's distribution network, 7052 bus, are conducted. Results confirm the efficiency of the proposed algorithm that can find high quality solutions satisfying all the physical and operational constraints of the problem.
Resumo:
Electric power distribution systems, and particularly those with overhead circuits, operate radially but as the topology of the systems is meshed, therefore a set of circuits needs to be disconnected. In this context the problem of optimal reconfiguration of a distribution system is formulated with the goal of finding a radial topology for the operation of the system. This paper utilizes experimental tests and preliminary theoretical analysis to show that radial topology is one of the worst topologies to use if the goal is to minimize power losses in a power distribution system. For this reason, it is important to initiate a theoretical and practical discussion on whether it is worthwhile to operate a distribution system in a radial form. This topic is becoming increasingly important within the modern operation of electrical systems, which requires them to operate as efficiently as possible, utilizing all available resources to improve and optimize the operation of electric power systems. Experimental tests demonstrate the importance of this issue. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In a smart grid environment, attention should be paid not only to the power supplied to satisfy loads and system losses but also to the services necessary to provide security and stability to the system: the so-called ancillary services. As they are well known the benefits that distributed generation can bring to electrical systems and to the environment, in this work the possibility that active power reserve for frequency control could be provided by distributed generators (DGs) in an efficient and economical way is explored. The proposed methodology was tested using the IEEE 34-bus distribution test system. The results show improvements in the capacity of the system for this ancillary service and decrease in system losses and payments of the distribution system operator to the DGs.
Resumo:
To validate a model for investigating the effects of analgesic drugs on mechanical, thermal and electrical stimulation testing. To investigate repeatability, sensitivity and specificity of nociceptive tests. Randomised experiment with 2 observers in 2 phases. Mechanical (M), thermal (TL) and electrical (E) stimuli were applied to the dorsal metacarpus (M-left and TL-right) and coronary band of the left thoracic limb (E) and a thoracic thermal stimulus (TT) was applied caudal to the withers in 8 horses (405 ± 43 kg). Stimuli intensities were increased until a clear avoidance response was detected without exceeding 20 N (M), 60°C (TL and TT) and 15 V (E). For each set of tests, 3 real stimuli and one sham stimulus were applied (32 per animal) using a blinded, randomised, crossover design repeated after 6 months. A distribution frequency and, for each stimulus, Chi-square and McNemar tests compared both the proportion of positive responses detected by 2 observers and the 2 study phases. The κ coefficients estimated interobserver agreement in determining endpoints. Sensitivity (384 tests) and specificity (128 tests) were evaluated for each nociceptive stimulus to assess the evaluators' accuracy in detecting real and sham stimuli. Nociceptive thresholds were 3.1 ± 2 N (M), 8.1 ± 3.8 V (E), 51.4 ± 5.5°C (TL) and 55.2 ± 5.3°C (TT). The level of agreement after all tests, M, E, TL and TT, was 90, 100, 84, 98 and 75%, respectively. Sensitivity was 89, 100, 89, 98 and 70% and specificity 92, 97, 88, 91 and 94%, respectively. The high interobserver agreement, sensitivity and specificity suggest that M, E and TL tests are valid for pain studies in horses and are suitable tools for investigating antinociceptive effects of analgesics in horses.
Resumo:
The biogas originated from anaerobic degradation of organic matter in landfills consists basically in CH4, CO2, and H2O. The landfills represent an important depository of organic matter with high energetic potential in Brazil, although with inexpressive use in the present. The estimation of production of the productive rate of biogas represents one of the major difficulties of technical order to the planning of capture system for rational consumption of this resource. The applied geophysics consists in a set of methods and techniques with wide use in environmental and hydrogeological studies. The DC resistivity method is largely applied in environmental diagnosis of the contamination in soil and groundwater, due to the contrast of electrical properties frequent between contaminated areas and the natural environment. This paper aims to evaluate eventual relationships between biogas flows quantified in drains located in the landfill, with characteristic patterns of electrical resistivity in depth. The drain of higher flow (117 m3 /h) in depth was characterized for values between 8000 Ω⋅m and 100.000 Ω⋅m, in contrast with values below 2000 Ω⋅m, which characterize in subsurface the drain with less flow (37 m3 /h), besides intermediary flow and electrical resistivity values, attributed to the predominance of areas with accumulation or generation of biogas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Abstract Rain gardens are an important tool in reducing the amount of stormwater runoff and accompanying pollutants from entering the city’s streams and lakes, and reducing their water quality. This thesis project analyzed the number of rain gardens installed through the City of Lincoln Nebraska Watershed Management’s Rain Garden Water Quality Project in distance intervals of one-eighth mile from streams and lakes. This data shows the distribution of these rain gardens in relation to streams and lakes and attempts to determine if proximity to streams and lakes is a factor in homeowners installing rain gardens. ArcGIS was used to create a map with layers to determine the number of houses with rain gardens in 1/8 mile distance increments from the city’s streams and lakes and their distances from a stream or lake. The total area, number of house parcels, and the type and location of each parcel type were also determined for comparison between the distance interval increments. The study revealed that fifty-eight percent of rain gardens were installed within a quarter mile of a stream or lake (an area covering 60% of the city and including 58.5% of the city’s house parcels), and that eighty percent of rain gardens were installed within three-eighth mile of streams or lakes (an area covering 75% of the city and 78.5% of the city’s house parcels). All parcels in the city are within 1 mile of a stream or lake. Alone the number of project houses per distance intervals suggested that proximity to a stream or lake was a factor in people’s decisions to install rain gardens. However, when compared to the number of house parcels available, proximity disappears as a factor in project participation.
Resumo:
Overhead distribution lines are often exposed to lightning overvoltages, whose waveforms vary widely and can differ substantially from the standard impulse voltage waveform (1,2 - 50). Different models have been proposed for predicting the strength of insulation subjected to impulses of non-standard waveforms. One of the most commonly used is the disruptive effect model, for which there are different methods for the estimation of the parameters required for its application. This paper aims at evaluating the dielectric behavior of medium voltage insulators subjected to impulses of non-standard waveforms, as well as at evaluating two methods for predicting their dielectric strength against such impulses. The test results relative to the critical lightning impulse flashover voltage (U50) and the volt-time characteristics obtained for the positive and negative polarities of different voltage waveforms are presented and discussed.
Resumo:
This paper presents an analysis of the impact of the lightning overvoltages on the operational performance of the energized shield wire line technology (SWL) implemented in two locations of the State of Rondonia, Brazil. The analysis covers the periods of 1996 to 2000 (SWL Jaru) and 1997 to 2002 (SWL Itapua do Oeste), and shows that lightning is responsible for most of the system outages. The paper describes the satisfactory results achieved with the system, showing that the isolation and energization of the shield wires does not deteriorate the lightning performance of the 230 kV transmission lines. Comparisons between the performances of the SWL technology, conventional 34.5 kV lines, and thermal power plants in operation in the same region are also presented. The results demonstrate the technical and economical viability of the SWL technology and show that its application can lead to a postponement of investments.
Resumo:
This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.
Resumo:
The physical origins of the magnetic properties of nonoriented electrical steels; its relations to microstructural features like grain size, nonmetallic inclusions, dislocation density distribution, crystallographic texture, and residual stresses; and its processing by cold rolling and annealing are overviewed, using quantitative relations whenever available.
Resumo:
This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.
Resumo:
Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements. (C) 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4704496]
Resumo:
We introduce a five-parameter continuous model, called the McDonald inverted beta distribution, to extend the two-parameter inverted beta distribution and provide new four- and three-parameter sub-models. We give a mathematical treatment of the new distribution including expansions for the density function, moments, generating and quantile functions, mean deviations, entropy and reliability. The model parameters are estimated by maximum likelihood and the observed information matrix is derived. An application of the new model to real data shows that it can give consistently a better fit than other important lifetime models. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.