840 resultados para Eastern fold belt
Resumo:
Yarn minisett technique (YMT) has been promoted throughout West Africa since the 1980s as a sustainable means of producing clean yarn planting material, but adoption of the technique is Often reported as being patchy at best. While there has been much research Oil the factors that influence adoption of the technique, there have been no attempts to assess its economic viability under 'farmer-managed' as distinct from 'on station' conditions. The present paper describes the results of farmer-managed trials employing the YMT (white yarn: Dioscorea rotundata) at two villages in Igalaland, Kogi State, Nigeria. One of the villages (Edeke) is on the banks of the River Niger and represents it specialist yarn environment, whereas the other village (Ekwuloko) is inland, where farmers employ a more general cropping system. Four farmers were selected in each of the two villages and asked to plant a trial comprising two varieties of yam, their popular local variety its well its another variety grown in other parts of Igalaland, and to treat yarn setts (80-100 g) with either woodash or insecticide/nematicide + fungicide mix (chemical treatment). Results suggest that while chemical sett treatment increased yield and hence gross margin compared with woodash, if household labour is costed then YMT is not economically viable. However, the specialist yarn growers of Edeke were far more positive about the use of YMT as they tended to keep the yarn seed tubers for planting rather than sell them. Thus, great care needs to be taken with planning adoption surveys on the assumption that all farmers should adopt a technology.
Resumo:
Chlorophyll-a concentration variations are described for two major river basins in England, the Humber and the Thames and related to catchment characteristics and nutrient concentrations across a range of rural, agricultural and urban/industrial settings. For all the rivers there are strong seasonal variations, with concentrations peaking in the spring and summer time when biological activity is at its highest. However, there are large variations in the magnitude of the seasonal effects across the rivers. For the spring-summer low-flow periods, average concentrations of chlorophyll-a correlate with soluble reactive phosphor-us (SRP). Chlorophyll-a is also correlated with particulate nitrogen (PN), organic carbon (POC) and suspended sediments. However, the strongest relationships are with catchment area and flow, where two straight line relationships are observed. The results indicate the importance of residence times for determining planktonic growth within the rivers. This is also indicated by the lack of chlorophyll-a response to lowering of SRP concentrations in several of the rivers in the area due to phosphorus stripping of effluents at major sewage treatment works. A key control on chlorophyll-a concentration may be the input of canal and reservoir waters during the growing period: this too relates to issues of residence times. However, there may well be a complex series of factors influencing residence time across the catchments due to features such as inhomogeneous flow within the catchments, a fractal distribution of stream channels that leads to a distribution of residence times and differences in planktonic inoculation sources. Industrial pollution on the Aire and Calder seems to have affected the relationship of chlorophyll-a with PN and POC. The results are discussed in relation to the Water Framework Directive. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The water quality of rainfall and runoff is described for two catchments of two tributaries of the River Thames, the Pang and Lambourn. Rainfall chemistry is variable and concentrations of most determinands decrease with increasing volume of catch probably due to 'wash out' processes. Two rainfall sites have been monitored, one for each catchment. The rainfall site on the Lambourn shows higher chemical concentrations than the one for the Pang which probably reflects higher amounts of local inputs from agricultural activity, Rainfall quality data at a long-term rainfall site on the Pang (UK National Air Quality Archive) shows chemistries similar to that for the Lambourn site. but with some clear differences. Rainfall chemistries show considerable variation on an event-to-event basis. Average water quality concentrations and flow-weighted concentrations as well as fluxes vary across the sites, typically by about 30%. Stream chemistry is much less variable due to the main Source of water coming from aquifer sources of high storage. The relationship between rainfall and runoff chemistry at the catchment outlet is described in terms of the relative proportions of atmospheric and within-catchment sources. Remarkably, in view of the quantity of agricultural and sewage inputs to the streams, the catchments appear to be retaining both P and N.
Resumo:
The southern Levant has a long history of human habitation and it has been previously suggested that climatic changes during the Late Pleistocene-Holocene stimulated changes in human behaviour and society. In order to evaluate such linkages, it is necessary to have a detailed understanding of the climate record. We have conducted an extensive and up-to-date review of terrestrial and marine climatic conditions in the Levant and Eastern Mediterranean during the last 25,000 years. We firstly present data from general circulation models (GCMs) simulating the climate for the last glacial maximum (LGM), and evaluate the output of the model by reference to geological climate proxy data. We consider the types of climate data available from different environments and proxies and then present the spatial climatic "picture" for key climatic events. This exercise suggests that the major Northern Hemisphere climatic fluctuations of the last 25,000 years are recorded in the Eastern Mediterranean and Levantine region. However, this review also highlights problems and inadequacies with the existing data. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2–4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.
Resumo:
A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). Analysis of the temporal and. spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air-sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18 degrees C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16 degrees and 14 degrees C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical-subtropical water mass exchange mechanism beneath the trade wind belt (south of 20 degrees N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.
Resumo:
New experiments underpin the interpretation of the basic division in crystallization behaviour of polyethylene in terms of whether or not there is time for the fold surface to order before the next molecular layer is added at the growth front. For typical growth rates, in Regime 11, polyethylene lamellae form with disordered {001} fold surfaces then transform, with lamellar thickening and twisting, towards the more-ordered condition found for slower crystallization in Regime 1, in which lamellae form with and retain {201} fold surfaces. Several linear and linear-low-density polyethylenes have been used to show that, for the same polymer crystallized alone or in a blend, the growth rate at which the change in initial lamellar condition occurs is reasonably constant thereby supporting the concept of a specific time for surfaces to attain the ordered {201}) state. This specific time, in the range from milliseconds to seconds, increases with molecular length, and in linear-low-density polymer, for higher branch contents. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Canopy interception of incident precipitation is a critical component of the forest water balance during each of the four seasons. Models have been developed to predict precipitation interception from standard meteorological variables because of acknowledged difficulty in extrapolating direct measurements of interception loss from forest to forest. No known study has compared and validated canopy interception models for a leafless deciduous forest stand in the eastern United States. Interception measurements from an experimental plot in a leafless deciduous forest in northeastern Maryland (39°42'N, 75°5'W) for 11 rainstorms in winter and early spring 2004/05 were compared to predictions from three models. The Mulder model maintains a moist canopy between storms. The Gash model requires few input variables and is formulated for a sparse canopy. The WiMo model optimizes the canopy storage capacity for the maximum wind speed during each storm. All models showed marked underestimates and overestimates for individual storms when the measured ratio of interception to gross precipitation was far more or less, respectively, than the specified fraction of canopy cover. The models predicted the percentage of total gross precipitation (PG) intercepted to within the probable standard error (8.1%) of the measured value: the Mulder model overestimated the measured value by 0.1% of PG; the WiMo model underestimated by 0.6% of PG; and the Gash model underestimated by 1.1% of PG. The WiMo model’s advantage over the Gash model indicates that the canopy storage capacity increases logarithmically with the maximum wind speed. This study has demonstrated that dormant-season precipitation interception in a leafless deciduous forest may be satisfactorily predicted by existing canopy interception models.
Resumo:
The incidence-severity relationship for cashew gummosis, caused by Lasiodiplodia theobromae, was studied to determine the feasibility of using disease incidence to estimate indirectly disease severity in order to establish the potential damage caused by this disease in semiarid north-eastern Brazil. Epidemics were monitored in two cashew orchards, from 1995 to 1998 in an experimental field composed of 28 dwarf clones, and from 2000 to 2002 in a commercial orchard of a single clone. The two sites were located 10 km from each other. Logarithmic transformation achieved the best linear adjustment of incidence and severity data as determined by coefficients of determination for place, age and pooled data. A very high correlation between incidence and severity was found in both fields, with different disease pressures, different cashew genotypes, different ages and at several epidemic stages. Thus, the easily assessed gummosis incidence could be used to estimate gummosis severity levels.
Resumo:
The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for "middle of the SARS-unique domain") in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1 ''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.
Resumo:
The NMR structure of a central segment of the previously annotated "SARS-unique domain" (SUD-M; "middle of the SARS-unique domain") in the SARS coronavirus (SARS-CoV) non-structural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3-residues 528-648, and there is a flexibly extended N-terminal tail with the residues 513-527 and a C-terminal flexible tail of residues 649-651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527-651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly-A and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows 3D structure homology with several helicases and NTP-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.