996 resultados para Earth Day
Resumo:
The history of experimental study on beta-delayed proton decays in the rare-earth region was simply reviewed. The physical results of the beta-delayed proton decays obtained at IMP, Lanzhou over the last 10 years were summarized, mainly including the first observation of 9 new beta-delayed proton precursors along the odd-Z proton drip line and the new data for 2 waiting-point nuclei in the rp-process. The results were compared and discussed with different nuclear model calculations. Finally, the perspective in near future was briefly introduced.
Resumo:
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h(-1)) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Resumo:
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h(-1)) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Resumo:
The microstructures and mechanical properties of Mg-6Zn-5Al-4Gd-1RE (RE = Ce or Y) alloys were investigated. The addition of Ce or Y obviously refines the grain size for the Mg-6Zn-5Al-4Gd-based alloy, while the Y element has a better refining effect. The Ce and Y show different grain-refining mechanisms: Ce addition mostly promotes the growth of secondary dendrite, while Y addition mainly increases the heterogeneous nucleation sites.
Resumo:
The synthesis and reactivity of a series of sodium and rare-earth metal complexes stabilized by a dianionic N-aryloxo-functionalized beta-ketoiminate ligand were presented. The reaction of acetylacetone with 1 equiv of 2-amino-4-methylphenol in absolute ethanol gave the compound 4-(2-hydroxy-5-methylphenyl)imino-2-pentanone (LH2, 1) in high yield.
Resumo:
Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.
Resumo:
The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO4 to LuVO4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.
Resumo:
In this paper, we present a facile and general synthetic route to high-quality alkaline earth metal fluoride (AEF(2), AE = Ca, Sr, Ba) nanocrystals and CaF2:Tb3+ nanocrystals based on the thermal decomposition of corresponding trifluoroacetate precursors in hot oleylamine. X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectra, photoluminescence spectra, and kinetic decays were employed to characterize the samples. The use of single-source precursors plays an important role in the formation of high-quality AEF(2) nanocrystals, and the formation process is demonstrated in detail.
Resumo:
The syntheses of several dialkyl complexes based on rare-earth metal were described. Three beta-diimine compounds with varying N-aryl substituents (HL1 = (2-CH3O(C6H4))N=C(CH3)CH=C(CH3)NH(2-CH3O(C6H4)), HL2 = (2,4,6-(CH3)(3) (C6H2))N=C(CH3)CH=C(CH3)NH(2,4,6-(CH3)(3)(C6H2)), HL3 = PhN=C(CH3)CH(CH3) NHPh) were treated with Ln(CH2SiMe3)(3)(THF)(2) to give dialkyl complexes L(1)Ln (CH2SiMe3)(2) (Ln = Y (1a), Lu (1b), Sc (1c)), L(2)Ln(CH2SiMe3)(2)(THF) (Ln = Y (2a), Lu (2b)), and (LLu)-Lu-3(CH2SiMe3)(2)(THF) (3). All these complexes were applied to the copolymerization of cyclohexene oxide (CHO) and carbon dioxide as single-component catalysts.
Resumo:
A series of new rare-earth metal bis(alkyl) complexes [L(1-3)Ln(CH2SiMe3)(2)(THF)(n)] (L-1 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H2Me3-2,4,6: Ln = Sc, n = 1 (1a); Ln = Lu, n = 1 (1b); L-2 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H3Et2-2,6: Ln = Sc, n = 1 (2a); Ln = Lu, n = 1 (2b); Ln = Y, n = 1 (2c); L-3 = MeC4H2SCH2NC6H4(Ph)(2)P=(NC6H3Pr2)-Pr-i-2,6: Ln = Sc, n = 0 (3a)) and (LSc)-Sc-4(CH2SiMe3)(2()THF) (4a) (L-4 = C6H5CH2NC6H4(Ph)(2)P=NC6H3Et2-2,6) have been prepared by reaction of rare-earth metal tris(alkyl)s with the corresponding HL1-4 ligands via alkane elimination.