925 resultados para ETHYLENE COPOLYMERS
Resumo:
The interface thickness in two triblock copolymers were determined using small-angle x-ray scattering in the context of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at three different temperatures. By viewing th
Resumo:
The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme
Resumo:
A surface fractal model was presented to describe the interface in block copolymers. It gives a simple power-law relationship between the scattering intensity I(q) and the wave vector q in a relatively wide range as qxi >> 1, I(q) is-proportional-to q(D-6
Resumo:
HexafluorobisA polyethersulfone-cardo polyethersulfone, random and block copolymers with different segment lengths were synthesized by a reaction of 4,4'-(hexafluoroisopropylidene)diphenol and 3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrrolidone with bis(4-chl
Resumo:
An experimental study of the phase morphology and miscibility of binary blends of poly-arylethersulfone (PES) and a liquid crystalline polymer (LCP) of p-oxybenzoate and ethylene terephthalate units in a 60/40 molar ratio (PET-60PHB) is described. Blends
Resumo:
The microstructure of two bicomponent and one tricomponent segmented copolymers, based on polydimethylsiloxane, poly(p-hydroxystyrene) or/and polysulfone, were investigated using an extended Goldman-Shen pulse sequence, proton spin-spin relaxation measurements, and C-13 and Si-29 NMR spectra. The results indicate that there exist four phases with different sizes, components and morphological structure in the segmented copolymers studied in this work, i. e., a rigid-chain phase of very slow motion, a rigid-chain-rich phase of slow motion, a flexible-chain-rich phase of fast motion and a flexible-chain phase of faster motion. The sizes of different domains, calculated from the spin diffusion rates, are about 50-100 angstrom for the flexible-chain-rich phase of fast motion and 200-300 angstrom for the flexible-chain phase of faster motion. The relative quantities of polydimethylsiloxane in the flexible-chain phase of fast motion are slightly different in different kinds of segmented copolymers.
Resumo:
Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO2 and modified poly(ethylene oxide) (PEO) electrolyte under various' conditions. The interfacial charge-transfer resistances R(ct) on PEO/PAn, R(ct) on PEO/LiMn2O4 increase with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance R(ct) on PEO/PAn is higher than R(ct) on PEO/LiMn2O4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn2O4 cell. The diffusion coefficients have been calculated from impedance data.
Resumo:
Heat-of-mixing data, obtained on blends of poly(ethylene oxide) (PEO) with whole and fractionated poly(vinyl acetate) (PVAc), were used to feed Patterson's theory of polymer-polymer miscibility. Negative values of mixing enthalpy, contact-energy term, interaction'' parameter and excess volume were obtained only for blends with the lowest molecular weight PVAc fraction. These results show that miscibility of PVAc with PEO strongly depends on its molecular weight. The calculated unfavourable excess volume term of the Patterson equation is small in comparison with the absolute value of the interaction term. Therefore, miscibility of PEO and low-molecular-weight PVAc is dictated by the weak specific interactions between different repeat units and by the entropic gain in the mixing process.
Resumo:
In this work, the radiation-induced structural changes in the copolymer of tetrafluoroethylene and ethylene (F-40) were studied by X-ray photoelectron spectroscopy (XPS). During irradiation, some CF2 groups in the polymer were found to have been converted into carbon structures that bonded indirectly with fluorine atoms.
Resumo:
The substituent chemical shift (SCS) has been applied to the assignment of the C-13 NMR spectrum of chlorinated polyethylene (CPE). CPE of different chlorine contents has been employed and their sequence structure discussed. The results show that characteristic of CPE with medium chlorine content is the dichloroethane structure in molecular chain. SCS parameters have been obtained from the C-13 NMR spectra. It was found that the effects of chlorine content and temperature on SCS are negligible, but the substituent parameter S1 reduced by 0.39 ppm when C2Cl4 was added to solvent ODCB.
Resumo:
Radiation-induced crosslinking of poly(methyl methacrylate) (PMMA)-poly(methylene oxide) (PEO) blends was studied. It was found that PMMA in PMMA-PEO blend can be crosslinked in the range of certain doses (1 approximately 20 x 10(4) Gy) and composition (PMMA% = 30 approximately 70) under the absence of oxygen. Moreover, it was also found that the crosslinking degree of PMMA in the blend in which the content of PMMA is 70% is the largest. The crosslinking degree of PMMA in the blend is closely related with the polymer miscibility. The crosslinking degree of the blend prepared at 60-degrees-C is far higher than one at ambient temperature.
Resumo:
The phase behaviours of poly(vinyl acetate) (PVAc) and poly(styrene-co-acrylonitrile)s (SAN) with poly(epichlorohydrin) (PECH) were examined using differential scanning calorimetry and an optical method using a hot plate. The PECH/PVAc blends showed LCST behaviour. The observed miscibility is thought to be a result of hydrogen-bonding interactions between the alpha-hydrogen atoms of PECH and the carbonyl groups of PVAc. Two SAN copolymers with an acrylonitrile (AN) content of 18 wt% (SAN18) and 25 wt% (SAN25), respectively, were also found to exhibit miscibility with PECH. No phase separation occurred by heating up to about 280-degrees-C, and the individual blend has a single, composition-dependent glass transition temperature. The formation of miscible PECH/SAN blends can be considered as a result of the intramolecular repulsion between styrene and AN units in SAN.
Resumo:
Poly(ethylene oxide) (PEO) was found to be miscible with uncured epoxy resin, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) in each blend. However, PEO with M(n) = 20 000 was judged to be immiscible with the highly amine-crosslinked epoxy resin (ER). The miscibility and morphology of the ER/PEO blends was remarkably affected by crosslinking. It was observed that phase separation in the ER/PEO blends occurred as the crosslinking progressed. This is considered to be due to the dramatic change in the chemical and physical nature of ER during the crosslinking.
Resumo:
The morphology and mechanical behaviour of phenolphthalein poly(ether ether ketone) (PEK-C)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends has been investigated. A poly(ethylene oxide)-b-polystyrene-b-poly(ethylene oxide) (PEO-PS-PEO) triblock copolymer was used as compatibilizer. It was found that PEO-PS-PEO has a compatibilizing effect on the PEK-C/PPO blends. The addition of PEO-PS-PEO to the blends greatly improves phase dispersion and interfacial interfacial adhesion and also enhances the ultimate tensile strength and Young's modulus at compositions ranging from 30 to 70% PEK-C. However, all the values of the ultimate tensile strength within the whole composition range are lower than those expected by simple additivity, probably owing to the poor mechanical properties of PEO-PS-PEO copolymer.