988 resultados para ESTABLISHED POPULATIONS
Resumo:
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Resumo:
RésuméEn agriculture d'énormes pertes sont causées par des champignons telluriques pathogènes tels que Thielaviopsis, Fusarium, Gaeumannomyces et Rhizoctonia ou encore l'oomycète Pythium. Certaines bactéries dites bénéfiques, comme Pseudomonas fluorescens, ont la capacité de protéger les plantes de ces pathogènes par la colonisation de leur racines, par la production de métabolites secondaires possédants des propriétés antifongiques et par l'induction des mécanismes de défenses de la plante colonisée. P. fluorescens CHAO, une bactérie biocontrôle isolée d'un champ de tabac à Payerne, a la faculté de produire un large spectre de métabolites antifongiques, en particulier le 2,4- diacétylphloroglucinol (DAPG), la pyolutéorine (PLT), le cyanure d'hydrogène (HCN), la pyrrolnitrine (PRN) ainsi que des chélateurs de fer.La plante, par sécrétion racinaire, produit des rhizodéposites, source de carbone et d'azote, qui profitent aux populations bactériennes vivant dans la rhizosphere. De plus, certains stresses biotiques et abiotiques modifient cette sécrétion racinaire, en terme quantitatif et qualitatif. De leur côté, les bactéries bénéfiques, améliorent, de façon direct et/ou indirect, la croissance de la plante hôte. De nombreux facteurs biotiques et abiotiques sont connus pour réguler la production de métabolites secondaires chez les bactéries. Des études récentes ont démontré l'importance de la communication entre la plante et les bactéries bénéfiques afin que s'établisse une interaction profitant à chacun des deux partis. Il est ainsi vraisemblable que les populations bactériennes associées aux racines soient capables d'intégrer ces signaux et d'adapter spécifiquement leur comportement en conséquence.La première partie de ce travail de thèse a été la mise au point d'outils basés sur la cytométrie permettant de mesurer l'activité antifongique de cellules bactériennes individuelles dans un environnent naturel, les racines des plantes. Nous avons démontré, grâce à un double marquage aux protéines autofluorescentes GFP et mCherry, que les niveaux d'expression des gènes impliqués dans la biosynthèse des substances antifongiques DAPG, PLT, PRN et HCN ne sont pas les mêmes dans des milieux de cultures liquides que sur les racines de céréales. Par exemple, l'expression de pltA (impliqué dans la biosynthèse du PLT) est quasiment abolie sur les racines de blé mais atteint un niveau relativement haut in vitro. De plus cette étude a mis en avant l'influence du génotype céréalien sur l'expression du gène phlA qui est impliqué dans la biosynthèse du DAPG.Une seconde étude a révélé la communication existant entre une céréale (orge) infectée par le pathogène tellurique Pythium ultimum et P. fluorescens CHAO. Un système de partage des racines nous a permis de séparer physiquement le pathogène et la bactérie bénéfique sur la plante. Cette méthode a donné la possibilité d'évaluer l'effet systémique, causé par l'attaque du pathogène, de la plante sur la bactérie biocontrôle. En effet, l'infection par le phytopathogène modifie la concentration de certains composés phénoliques dans les exsudats racinaires stimulant ainsi l'expression de phi A chez P.fluorescens CHAO.Une troisième partie de ce travail focalise sur l'effet des amibes qui sont des micro-prédateurs présents dans la rhizosphere. Leur présence diminue l'expression des gènes impliqués dans la biosynthèse du DAPG, PLT, PRN et HCN chez P.fluorescens CHAO, ceci en culture liquide et sur des racines d'orge. De plus, des molécules provenant du surnageant d'amibes, influencent l'expression des gènes requis pour la biosynthèse de ces antifongiques. Ces résultats illustrent que les amibes et les bactéries de la rhizosphere ont développé des stratégies pour se reconnaître et adapter leur comportement.La dernière section de ce travail est consacrée à l'acide indole-acétique (LA.A), une phytohormone connue pour son effet stimulateur sur phlA. Une étude moléculaire détaillée nous a démontré que cet effet de l'IAA est notamment modulé par une pompe à efflux (FusPl) et de son régulateur transcriptionnel (MarRl). De plus, les gènes fusPl et marRl sont régulés par d'autres composés phénoliques tels que le salicylate (un signal végétal) et l'acide fusarique (une phytotoxine du pathogène Fusarium).En résumé, ce travail de thèse illustre la complexité des interactions entre les eucaryotes et procaryotes de la rhizosphère. La reconnaissance mutuelle et l'instauration d'un dialogue moléculaire entre une plante hôte et ses bactéries bénéfiques associées? sont indispensables à la survie des deux protagonistes et semblent être hautement spécifiques.SummaryIn agriculture important crop losses result from the attack of soil-borne phytopathogenic fungi, including Thielaviopsis, Fusarium, Gaeumannomyces and Rhizoctonia, as well as from the oomycete Pythium. Certain beneficial microorganisms of the rhizosphere, in particular Pseudomonas fluorescens, have the ability to protect plants against phytopathogens by the intense colonisation of roots, by the production of antifungal exoproducts, and by induction of plant host defences. P. fluorescens strain CHAO, isolated from a tobacco field near Payerne, produces a large array of antifungal exoproducts, including 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT), hydrogen cyanide (HCN), pyrrolnitrin (PRN) and iron chelators. Plants produce rhizodeposites via root secretion and these represent a relevant source of carbon and nitrogen for rhizosphere microorganisms. Various biotic and abiotic stresses influence the quantity and the quality of released exudates. One the other hand, beneficial bacteria directly or indirectly promote plant growth. Biotic and abiotic factors regulate exoproduct production in biocontrol microorganisms. Recent studies have highlighted the importance of communication in establishing a fine-tuned mutualist interaction between plants and their associated beneficial bacteria. Bacteria may be able to integrate rhizosphere signals and adapt subsequently their behaviour.In a first part of the thesis, we developed a new method to monitor directly antifungal activity of individual bacterial cells in a natural environment, i.e. on roots of crop plants. We were able to demonstrate, via a dual-labelling system involving green and red fluorescent proteins (GFP, mCherry) and FACS-based flow cytometry, that expression levels of biosynthetic genes for the antifungal compounds DAPG, PLT, PRN, and HCN are highly different in liquid culture and on roots of cereals. For instance, expression of pltA (involved in PLT biosynthesis) was nearly abolished on wheat roots whereas it attained a relatively high level under in vitro conditions. In addition, we established the importance of the cereal genotype in the expression of phi A (involved in DAPG biosynthesis) in P. fluorescens CHAO.A second part of this work highlighted the systemic communication that exists between biocontrol pseudomonads and plants following attack by a root pathogen. A split-root system, allowing physical separation between the soil-borne oomycete pathogen Phytium ultimum and P. fluorescens CHAO on barley roots, was set up. Root infection by the pathogen triggered a modification of the concentration of certain phenolic root exudates in the healthy root part, resulting in an induction ofphlA expression in P. fluorescens CHAO.Amoebas are micro-predators of the rhizosphere that feed notably on bacteria. In the third part of the thesis, co-habitation of Acanthamoeba castellanii with P. fluorescens CHAO in culture media and on barley roots was found to significantly reduce bacterial expression of genes involved in the biosynthesis of DAPG, PLT, HCN and PRN. Interestingly, molecular cues present in supernatant of A. castelanii induced the expression of these antifungal genes. These findings illustrate the strategies of mutual recognition developed by amoeba and rhizosphere bacteria triggering responses that allow specific adaptations of their behaviour.The last section of the work focuses on indole-3-acetic acid (IAA), a phytohormone that stimulates the expression of phi A. A detailed molecular study revealed that the IAA-mediated effect on phi A is notably modulated by an efflux pump (FusPl) and its transcriptional regulator (MarRl). Remarkably, transcription of fusPl and marRl was strongly upregulated in presence of other phenolic compounds such as salicylate (a plant signal) and fusaric acid (a phytotoxin of the pathogenic fungus Fusarium).To sum up, this work illustrates the great complexity of interactions between eukaryotes and prokaryotes taking place in the rhizosphere niche. The mutual recognition and the establishment of a molecular cross-talk between the host plant and its associated beneficial bacteria are essential for the survival of the two partners and these interactions appear to be highly specific.
Resumo:
Little is known about the ecology of soil inoculants used for pathogen biocontrol, biofertilization and bioremediation under field conditions. We investigated the persistence and the physiological states of soil-inoculated Pseudomonas protegens (previously Pseudomonas fluorescens) CHA0 (108 CFU g−1 surface soil) in different soil microbial habitats in a planted ley (Medicago sativa L.) and an uncovered field plot. At 72 days, colony counts of the inoculant were low in surface soil (uncovered plot) and earthworm guts (ley plot), whereas soil above the plow pan (uncovered plot), and the rhizosphere and worm burrows present until 1.2 m depth (ley plot) were survival hot spots (105-106 CFU g−1 soil). Interestingly, strain CHA0 was also detected in the subsoil of both plots, at 102-105 CFU g−1 soil between 1.8 and 2 m depth. However, non-cultured CHA0 cells were also evidenced based on immunofluorescence microscopy. Kogure's direct viable counts of nutrient-responsive cells showed that many more CHA0 cells were in a viable but non-culturable (VBNC) or a non-responsive (dormant) state than in a culturable state, and the proportion of cells in those non-cultured states depended on soil microbial habitat. At the most, cells in a VBNC state amounted to 34% (above the plow pan) and those in a dormant state to 89% (in bulk soil between 0.6 and 2 m) of all CHA0 cells. The results indicate that field-released Pseudomonas inoculants may persist at high cell numbers, even in deeper soil layers, and display a combination of different physiological states whose prevalence fluctuates according to soil microbial habitats.
Resumo:
BACKGROUND: One of the major issues concerning disease ecology and conservation is knowledge of the factors that influence the distribution of parasites and consequently disease outbreaks. This study aimed to investigate avian haemosporidian composition and the distribution of these parasites in three altitudinally separated great tit (Parus major) populations in western Switzerland over a three-year period. The objectives were to determine the lineage diversity of parasites occuring across the study populations and to investigate whether altitudinal gradients govern the distribution of haemosporidian parasites by lineage. METHODS: In this study molecular approaches (PCR and sequencing) were used to detect avian blood parasites (Plasmodium sp., Haemoproteus sp. and Leucocytozoon sp.) in populations of adult great tits caught on their nests during three consecutive breeding seasons. RESULTS: High levels of parasite prevalence (88-96%) were found across all of the study populations with no significant altitude effect. Altitude did, however, govern the distribution of parasites belonging to different genera, with Plasmodium parasites being more prevalent at lower altitudes, Leucocytozoon parasites more at high altitude and Haemoproteus parasite prevalence increasing with altitude. A total of 27 haemosporidian parasite lineages were recorded across all study sites, with diversity showing a positive correlation to altitude. Parasites belonging to lineage SGS1 (P. relictum) and PARUS4 and PARUS19 (Leucocytozoon sp.) dominated lower altitudes. SW2 (P. polare) was the second most prevalent lineage of parasite detected overall and these parasites were responsible for 68% of infections at intermediate altitude, but were only documented at this one study site. CONCLUSIONS: Avian haemosporidian parasites are not homogeneously distributed across host populations, but differ by altitude. This difference is most probably brought about by environmental factors influencing vector prevalence and distribution. The high occurrence of co-infection by different genera of parasites might have pronounced effects on host fitness and should consequently be investigated more rigorously.
Resumo:
Report on a Review of Statewide Procurement for contracts established between July 1, 2007 and December 31, 2008
Resumo:
Globalization and diverse populations due to migration imply that counselors are expected to deliver career services to populations from a large array of cultural settings. Moreover, individuals belonging to minority or non-dominant groups may be underserved or misserved, thus decreasing their chances of finding employment opportunities through career counseling. To develop specific interventions minority or non-dominant groups, it seems important to understand their strength and weaknesses. These strengths and weaknesses will be presented in terms of risk and resilience factors, such as low future orientation and social support respectively. In the last two decades, several authors have made contributions to adapt and improve career services in order to best meet these minority groups' needs. A review of this literature identified thirteen keys to effective practice. For example, one key is to take responsibility for one's own biases and prejudices. Nonetheless, some underserved groups remain difficult to identify. Comparing some basic national demographic data with data from our counseling centers may be helpful in this context in identifying specific groups and assessing needs. One solution, in order to promote social justice across (all) cultural groups, is to encourage multiculturalism in both career counseling and society as a whole. A more inclusive society would allow each person in a minority or non-dominant group to contribute more effectively to the development and growth of this society.
Resumo:
Brain connectivity can be represented by a network that enables the comparison of the different patterns of structural and functional connectivity among individuals. In the literature, two levels of statistical analysis have been considered in comparing brain connectivity across groups and subjects: 1) the global comparison where a single measure that summarizes the information of each brain is used in a statistical test; 2) the local analysis where a single test is performed either for each node/connection which implies a multiplicity correction, or for each group of nodes/connections where each subset is summarized by one single test in order to reduce the number of tests to avoid a penalizing multiplicity correction. We comment on the different levels of analysis and present some methods that have been proposed at each scale. We highlight as well the possible factors that could influence the statistical results and the questions that have to be addressed in such an analysis.
Resumo:
The stable co-existence of two haploid genotypes or two species is studied in a spatially heterogeneous environment submitted to a mixture of soft selection (within-patch regulation) and hard selection (outside-patch regulation) and where two kinds of resource are available. This is analysed both at an ecological time-scale (short term) and at an evolutionary time-scale (long term). At an ecological scale, we show that co-existence is very unlikely if the two competitors are symmetrical specialists exploiting different resources. In this case, the most favourable conditions are met when the two resources are equally available, a situation that should favour generalists at an evolutionary scale. Alternatively, low within-patch density dependence (soft selection) enhances the co-existence between two slightly different specialists of the most available resource. This results from the opposing forces that are acting in hard and soft regulation modes. In the case of unbalanced accessibility to the two resources, hard selection favours the most specialized genotype, whereas soft selection strongly favours the less specialized one. Our results suggest that competition for different resources may be difficult to demonstrate in the wild even when it is a key factor in the maintenance of adaptive diversity. At an evolutionary scale, a monomorphic invasive evolutionarily stable strategy (ESS) always exists. When a linear trade-off exists between survival in one habitat versus that in another, this ESS lies between an absolute adjustment of survival to niche size (for mainly soft-regulated populations) and absolute survival (specialization) in a single niche (for mainly hard-regulated populations). This suggests that environments in agreement with the assumptions of such models should lead to an absence of adaptive variation in the long term.
Resumo:
Background: Transposable elements (TEs) constitute a substantial amount of all eukaryotic genomes. They induce an important proportion of deleterious mutations by insertion into genes or gene regulatory regions. However, their mutational capabilities are not always adverse but can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution and activity in the genomes of populations under different environmental and demographic regimes, is important to understand their role in species evolution. In this work we study the chromosomaldistribution of two TEs, gypsy and bilbo, in original and colonizing populations of Drosophilasubobscura to reveal the putative effect of colonization on their insertion profile.Results: Chromosomal frequency distribution of two TEs in one original and three colonizingpopulations of D. subobscura, is different. Whereas the original population shows a low insertionfrequency in most TE sites, colonizing populations have a mixture of high (frequency ¿ 10%) andlow insertion sites for both TEs. Most highly occupied sites are coincident among colonizingpopulations and some of them are correlated to chromosomal arrangements. Comparisons of TEcopy number between the X chromosome and autosomes show that gypsy occupancy seems to becontrolled by negative selection, but bilbo one does not. Conclusion: These results are in accordance that TEs in Drosophila subobscura colonizing populations are submitted to a founder effect followed by genetic drift as a consequence of colonization. This would explain the high insertion frequencies of bilbo and gypsy in coincident sites of colonizing populations. High occupancy sites would represent insertion events prior to colonization. Sites of low frequency would be insertions that occurred after colonization and/orcopies from the original population whose frequency is decreasing in colonizing populations. Thiswork is a pioneer attempt to explain the chromosomal distribution of TEs in a colonizing specieswith high inversion polymorphism to reveal the putative effect of arrangements in TE insertionprofiles. In general no associations between arrangements and TE have been found, except in a fewcases where the association is very strong. Alternatively, founder drift effects, seem to play aleading role in TE genome distribution in colonizing populations.