968 resultados para ENDOTHELIAL PROGENITOR CELL
Resumo:
Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.
Resumo:
BACKGROUND: Regional administration of high doses of tumor necrosis factor (TNF) and interferon gamma (IFN gamma) to metastatic melanoma patients causes selective disruption of the tumor vasculature. This effect is paralleled by decreased endothelial cell proliferation and suppressed integrin alpha V beta 3-mediated adhesion in vitro. Overexpression of the cyclin-dependent kinase (cdk) inhibitory protein p16INK4a was reported to interfere with integrin alpha V beta 3-dependent melanoma cell adhesion. MATERIALS AND METHODS: TNF- and IFN gamma-treated HUVEC were analyzed for cell cycle progression and for protein expression by flow cytometry and Western blotting, respectively. p16INK4a was overexpressed by transient transfection, and HUVEC adhesion was tested in short-term adhesion assays. RESULTS: TNF and IFN gamma synergistically induced a G1 arrest associated with reduced levels of cyclin D1 and cdk2, and increased expression of the cdk inhibitors p16INK4a, p21WAF and p27Kip1. p16INK4a overexpression, however, had no effect on alpha V beta 3-mediated adhesion. CONCLUSION: These results implicate the down-regulation of cyclin D1 and cdk-2, and up-regulation of p16INK4a, p21WAF and p27Kip1 in the suppression of endothelial cell proliferation induced by TNF/IFN gamma and demonstrate that increased p16INK4a levels are not sufficient to suppress alpha V beta 3-mediated endothelial cell adhesion.
Resumo:
Molecular mechanisms by which exercise exerts cardiovascular benefits are poorly understood. Exercise-induced increase of endothelial NO synthase (eNOS) phosphorylation through the protein kinase Akt has been shown to be a key mechanism underlying the beneficial effect of exercise in coronary artery disease patients. We examined whether this protective pathway might also be activated in long-term-exercised healthy mice. C57BL/6 wild-type mice swam for 24 weeks. A group of sedentary animals were used as controls. Aortic levels of total protein kinase Akt (protein kinase B), phosphorylated Akt at ser473 (p-Akt), total eNOS, phosphorylated eNOS at Ser1177 (p-eNOS), and PECAM-1 (platelet endothelial cell adhesion molecule-1) were assessed by Western blotting. Protein expressions of Akt, p-Akt, eNOS, p-eNOS, and PECAM-1 were not modulated by 24 weeks of exercise. The Akt-dependent eNOS phosphorylation did not seem to be a primary molecular adaptation in response to long-term exercise in healthy mice.
Resumo:
Increase in potency of adult stem/progenitor cells holds great expectations for regenerative medicine; reprogramming is achieved by manipulating the genome or indirectly by manipulating the microenvironment. However, the genetic approach, which can result in lineage conversion up to ground pluripotent embryonic state, will certainly face strict regulatory constraints and consequently translation to the clinic may be difficult. Manipulating stem cell fate without altering the genome of adult stem cells is a promising alternative. My laboratory has demonstrated that non hairy squamous epithelia e.g. the cornea, the oral cavity, the oesophagus, the vagina, contain clonogenic stem cells that can respond to skin morphogenetic signals and form epidermis, cycling hair follicles and sebaceous glands. This capacity is maintained in serial transplantation, crosses primary germ line boundaries and is intrinsic to the stem cells, as cells which have never been exposed to cell culture behave in a similar fashion. Even more surprising, the thymus contains a population of clonogenic epithelial cells of endodermal origin that maintain a thymic identity in culture and have the capacity to incorporate into a thymic network, but can acquire the functionality of bona fide multipotent stem cells of the skin when exposed to proper developmental signals. Thymic epithelial cells exposed to a skin microenvironment exhibit a down-regulation or silencing of transcription factors important for thymic function. Hence, it is possible to reveal unsuspected potency and even to robustly reprogram stem cells by solely manipulating the microenvironment.
Resumo:
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
RESUME L'angiogénèse tumorale est un processus essentiel au développement des tumeurs. Les intégrines, molécules d'adhésions transmembranaires, sont d'importants effecteurs de l'angiogenèse. En permettant l'adhésion à la matrice extra-cellulaire, les intégrines transmettant des signaux de survie, de migration, et de prolifération. Le facteur de nécrose tumorale α (TNFα) est utilisé pour le traitement régional de cancers chez l'homme. II agit en détruisant sélectivement les vaisseaux angiogéniques. Cependant, son administration systémique chez l'homme est limitée par les réactions de vaso-dilatation sévères qu'il provoque. Le but de mon travail fut de rechercher des conditions permettant la sensibilisation des cellules endothéliales au TNFα et qui pourraient être applicables en clinique, ceci afin d'accroître l'efficacité de cette molécule. Nous avons testé la possibilité d'interférer avec les signaux de survie provenant des intégrines. Pour cela, des cellules endothéliales furent cultivées dans des conditions d'adhésion ou en suspension, ou alors exposées dans des conditions d'adhésion au zoledronate (biphosphonate contenant du nitrogène). Dans ces conditions, les effets du TNFα sur les cellules endothéliales furent étudiés, en particulier l'induction de la mort cellulaire. Dans ce travail, nous montrons que le zoledronate sensibilise les cellules endothéliales à la nécrose induite par TNFα. Cet effet s'accompagne de l'inhibition de la phosphorylation de FAK, PKB, et JNK, ainsi que de l'inhibition de la prénylation des protéines. En revanche, l'activation de NF-kB et p38 n'est pas perturbée. La restoration de la prénylation des protéines empêche la mort des HUVEC traitées par zoledronate et TNFα, et rétablit la phosphorylation de FAK, PKB, et JNK. Des essais d'angiogénèse in vivo montrent que le zoledronate inhibe l'angiogénèse induite par FGF-2. Le zoledronate encapsulé dans des liposomes permet de ralentir la croissance tumorale et synergise avec le TNFα en l'inhibant. L'inihibtion de la prénylation des protéines est un des mécanismes de sensibilisation du zoledronate au TNFα. In vivo, la synergie de leur association sur la croissance tumorale est efficace. Ces résultats encouragent la poursuite de l'étude des effets de ces deux drogues sur la croissance tumorale. SUMMARY The formation of tumor-associated vessels is essential for tumor progression. Cell adhesion molecules of the integrin family are important mediators of angiogenesis, by providing adhesive signals necessary for endothelial cell migration, proliferation and survival. Anti-angiogenic therapies are currently considered as highly promising in the treatment of human cancer. Tumor Necrosis Factor α (TNFα) is used for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of angiogenic tumor vessels. Systemic administration of TNFα in humans, however, induces a severe inflammatory condition that prevents its use far the treatments of tumors localized outside of limbs. The aim of my work was to find strategies to sensitize angiogenic endothelial cells to TNFα-induced death, which could be potentially translated into clinical setting to improve the therapeutic efficacy of TNFα. We specifically tested the hypothesis whether interference with integrin-mediated adhesion and signaling may sensitize endothelial cells to TNFα-induced death. To test this hypothesis we cultured endothelial cells (EC) under conditions of cell-matrix or cell-cell adhesion or exposed matrix-adherent EC to the nitrogen-containing bisphosphonate zoledronate, and characterized the effect on TNFα-mediated signaling events and cell death. We show that zoledronate sensitizes HUVEC to TNFα-induced necrosis-like programmed cell death. This effect was associated with suppression of sustained phosphorylation of PKB and JNK and decreased protein prenylation, whereas TNFα-induced activation of NF-kB and p38 were not inhibited. Restoration of protein prenylation rescued HUVEC from zoledronate and TNFα-induced death, and restored FAK, PKB and JNK phosphorylation. By using in vivo angiogenesis assay we showed that zoledronate suppressed FGF-2-induced angiogenesis. Liposome-encapulated zoledronate partially inhibited tumor growth and synergized with TNFα to fully suppress tumor growth. Taken together, this work has identified protein prenylation as a mechanisms by which zoledronate sensitizes endothelial cells to TNFα-induced death in vitro and provides initial evidence that zoledronate synergizes with TNFα in vivo resulting in improved anti-tumor activity. These results warrant further study of the anti-tumor effects of zoledronate and TNFα and should be further studies in view of their clinical relevance.
Resumo:
One of the principal issues facing biomedical research is to elucidate developmental pathways and to establish the fate of stem and progenitor cells in vivo. Hematopoiesis, the process of blood cell formation, provides a powerful experimental system for investigating this process. Here, we employ transcriptional regulatory elements from the stem cell leukemia (SCL) gene to selectively label primitive and definitive hematopoiesis. We report that SCL-labelled cells arising in the mid to late streak embryo give rise to primitive red blood cells but fail to contribute to the vascular system of the developing embryo. Restricting SCL-marking to different stages of foetal development, we identify a second population of multilineage progenitors, proficient in contributing to adult erythroid, myeloid and lymphoid cells. The distinct lineage-restricted potential of SCL-labelled early progenitors demonstrates that primitive erythroid cell fate specification is initiated during mid gastrulation. Our data also suggest that the transition from a hemangioblastic precursors with endothelial and blood forming potential to a committed hematopoietic progenitor must have occurred prior to SCL-marking of definitive multilineage blood precursors.
Resumo:
Hydrophilic nanocarriers formed by electrostatic interaction of chitosan with oppositely charged macromolecules have a high potential as vectors in biomedical and pharmaceutical applications. However, comprehensive information about the fate of such nanomaterials in biological environment is lacking. We used chitosan from both animal and fungal sources to form well-characterized chitosan-pentasodium triphosphate (TPP)//alginate nanogels suitable for comparative studies. Upon exposure of human colon cancer cells (HT29 and CaCo2), breast cancer cells (MDA-MB-231 and MCF-7), glioblastoma cells (LN229), lung cancer cells (A549), and brain-derived endothelial cells (HCEC) to chitosan-(TPP)//alginate nanogels, cell type-, nanogel dosage-, and exposure time-dependent responses are observed. Comparing chitosan-TPP//alginate nanogels prepared from either animal or fungal source in terms of nanogel formation, cell uptake, reactive oxygen species production, and metabolic cell activity, no significant differences become obvious. The results identify fungal chitosan as an alternative to animal chitosan in particular if biomedical/pharmaceutical applications are intended.
Resumo:
Autologous brain cell transplantation might be useful for repairing lesions and restoring function of the central nervous system. We have demonstrated that adult monkey brain cells, obtained from cortical biopsy and kept in culture for a few weeks, exhibit neural progenitor characteristics that make them useful for brain repair. Following MPTP treatment, primates were dopamine depleted but asymptomatic. Autologous cultured cells were reimplanted into the right caudate nucleus of the donor monkey. Four months after reimplantation, histological analysis by stereology and TH immunolabeling showed that the reimplanted cells successfully survived, bilaterally migrated in the whole striatum, and seemed to have a neuroprotection effect over time. These results may add a new strategy to the field of brain neuroprotection or regeneration and could possibly lead to future clinical applications.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Resumo:
IL-2 immunotherapy is an attractive treatment option for certain metastatic cancers. However, administration of IL-2 to patients can lead, by ill-defined mechanisms, to toxic adverse effects including severe pulmonary edema. Here, we show that IL-2-induced pulmonary edema is caused by direct interaction of IL-2 with functional IL-2 receptors (IL-2R) on lung endothelial cells in vivo. Treatment of mice with high-dose IL-2 led to efficient expansion of effector immune cells expressing high levels of IL-2Rbetagamma, including CD8(+) T cells and natural killer cells, which resulted in a considerable antitumor response against s.c. and pulmonary B16 melanoma nodules. However, high-dose IL-2 treatment also affected immune cell lineage marker-negative CD31(+) pulmonary endothelial cells via binding to functional alphabetagamma IL-2Rs, expressed at low to intermediate levels on these cells, thus causing pulmonary edema. Notably, IL-2-mediated pulmonary edema was abrogated by a blocking antibody to IL-2Ralpha (CD25), genetic disruption of CD25, or the use of IL-2Rbetagamma-directed IL-2/anti-IL-2 antibody complexes, thereby interfering with IL-2 binding to IL-2Ralphabetagamma(+) pulmonary endothelial cells. Moreover, IL-2/anti-IL-2 antibody complexes led to vigorous activation of IL-2Rbetagamma(+) effector immune cells, which generated a dramatic antitumor response. Thus, IL-2/anti-IL-2 antibody complexes might improve current strategies of IL-2-based tumor immunotherapy.
Resumo:
Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.
Resumo:
Background: Since the rate of histologically 'negative' appendices still ranges between 15 and 20%, appendicitis in 'borderline' cases remains a challenging disease. As previously described, cell adhesion molecule expression correlates with different stages of appendicitis. Therefore, it was of interest to determine whether the 'negative' appendix correlated with the absence of E-selectin or vascular cell adhesion molecule-1 (VCAM-1). Methods: Nineteen grossly normal appendices from a series of 120 appendectomy specimens from patients with suspected appendicitis were analysed in frozen sections for the expression of E-selectin and VCAM-1. As control, 5 normal appendices were stained. Results: This study showed a coexpression of E-selectin and VCAM-1 in endothelial cells in early and recurrent appendicitis. In patients with symptoms for less than 6 h, only E-selectin was detected. Cases with fibrosis and luminal obliteration were only positive for VCAM-1. In cases of early appendicitis with symptoms of less than 6 h duration, a discordance between histological and immunohistochemical results was found. Conclusions: This report indicates that E-selectin and VCAM-1 expression could be useful parameters in the diagnosis of appendicitis in borderline cases.
Resumo:
PURPOSE: To look for apoptosis pathways involved in corneal endothelial cell death during acute graft rejection and to evaluate the potential role of nitric oxide in this process. MATERIALS AND METHODS: Corneal buttons from Brown-Norway rats were transplanted into Lewis rat corneas. At different time intervals after transplantation, apoptosis was assessed by diamino-2-phenylindol staining and annexin-V binding on flat-mount corneas, and by terminal transferase dUTP nick end labeling (TUNEL), caspase-3 dependent and leukocyte elastase inhibitor (LEI)/LDNase II caspase-independent pathways on sections. Inducible nitric oxide synthase (NOS-II) expression and the presence of nitrotyrosine were assayed by immunohistochemistry. RESULTS: Graft endothelial cells demonstrated nuclear fragmentation and LEI nuclear translocation, annexin-V binding, and membranes bleb formation. Apoptosis associated with caspase-3 activity or TUNEL-positive reaction was not observed at any time either in the graft or in the recipient corneal endothelial cells. During 14 days posttransplantation, the recipient corneal endothelial cells remained unaltered and their number unchanged in all studied corneas. NOS-II was expressed in infiltrating cells present within the graft. This expression was closely associated with the presence of nitrotyrosine in endothelial and infiltrating cells. CONCLUSION: During the time course of corneal graft rejection, graft endothelial cells undergo apoptosis. Apoptosis is caspase 3 independent and TUNEL negative and is, probably, carried out by an alternative pathway driven by an LEI/L-Dnase II. Peroxynitrite formation may be an additional mechanism for cell toxicity and programmed cell death of the graft endothelial cells during the rejection process in this model.