973 resultados para ELKO spinor fields
Resumo:
Purpose: To compare two fast threshold strategies of visual field assessment; SITA Fast (HSF) and Tendency Orientated Perimetry (TOP), in detecting visual field loss in patients with glaucoma. Methods: Seventy-six glaucoma, ocular hypertensive and normal patients had HSF and TOP performed in random order. Quantitative comparisons for the global visual field indices - mean deviation and defect (MD) for HSF and TOP, and pattern standard deviation (PSD) for HSF and loss variance (LV) for TOP - were made using correlation coefficients. Humphrey global parameters were converted to Octopus equivalents, and method comparison analysis was used to determine agreement between the two strategies. Test duration times were compared using t-test. Sensitivity and specificity for these two algorithms were determined according to predetermined criteria. Results: High correlation coefficient values were obtained for MD measurements between HSF and TOP (r=-0.89, P
Resumo:
The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10 gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.
Resumo:
Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.
Resumo:
For the delivery of intensity-modulated radiation therapy (IMRT), highly modulated fields are used to achieve dose conformity across a target tumour volume. Recent in vitro evidence has demonstrated significant alterations in cell survival occurring out-of-field which cannot be accounted for on the basis of scattered dose. The radiobiological effect of area, dose and dose-rate on out-of-field cell survival responses following exposure to intensity-modulated radiation fields is presented in this study. Cell survival was determined by clonogenic assay in human prostate cancer (DU-145) and primary fibroblast (AG0-1522) cells following exposure to different modulated field configurations delivered using a X-Rad 225 kVp x-ray source. Uniform survival responses were compared to in- and out-of-field responses in which 25-99% of the cell population was shielded. Dose delivered to the out-of-field region was varied from 1.6-37.2% of that delivered to the in-field region using different levels of brass shielding. Dose rate effects were determined for 0.2-4 Gy min⁻¹ for uniform and modulated exposures with no effect seen in- or out-of-field. Survival responses showed little dependence on dose rate and area in- and out-of-field with a trend towards increased survival with decreased in-field area. Out-of-field survival responses were shown to scale in proportion to dose delivered to the in-field region and also local dose delivered out-of-field. Mathematical modelling of these findings has shown survival response to be highly dependent on dose delivered in- and out-of-field but not on area or dose rate. These data provide further insight into the radiobiological parameters impacting on cell survival following exposure to modulated irradiation fields highlighting the need for refinement of existing radiobiological models to incorporate non-targeted effects and modulated dose distributions.
Resumo:
Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.
Resumo:
A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.
Resumo:
We consider two interlinked non-linear interactions occurring simultaneously in a single chi((2)) crystal. Classical and quantum working regimes are considered and their peculiar properties analysed. In particular, we describe an experiment, realized in the classical regime, that verifies the holographic nature of the process, and predict, for the quantum regime, the generation of a fully inseparable tripartite Gaussian state of light that can be used to support a general 1--> 2 continuous variable telecloning protocol.
Resumo:
Low growth equilibria with low investment in human capital generally tend to
persist till an external shock affects the economy. In this paper we use data on
Christian missions to proxy a long-lasting educational shock in Africa. We estimate
the effect of this shock on the quality of children which we proxy using the rate of
underweight children. Consistent with the economic theory we find that the quality
of children significantly rises with the exposure to this shock and this indirect effect
accounts to almost 4 percent in terms of GDP for districts with the maximal exposure
Resumo:
High Fidelity Simulation or Human Patient Simulation is an educational strategy embedded within nursing curricula throughout many healthcare educational institutions. This paper reports on an evaluative study that investigated the views of a group of Year 2 undergraduate nursing students from the mental health and the learning disability fields of nursing (n = 75) in relation to simulation as a teaching pedagogy. The study took place in the simulation suite within a School of Nursing and Midwifery in the UK. Two patient scenarios were used for the session and participants completed a 22-item questionnaire consisting of three biographical information questions and a 19-item Likert scale. Descriptive statistics were employed to illustrate the data and non-parametric testing (Mann-Whitney U test) was employed to test a number of hypotheses. Overall students were positive about the introduction of patient scenarios using the human patient simulator into the undergraduate nursing curriculum. This study used a small, convenience sample in one institution and therefore the results obtained cannot be generalised to nursing education before further research can be conducted with larger samples and a mixed-method research approach. However these results provide encouraging evidence to support the use of simulation within the mental health and the learning disability fields of nursing, and the development and implementation of further simulations to complement the students’ practicum.
Resumo:
Newly qualified nurses have been educated and assessed as being proficient carrying out certain procedures ,one such insertion of nasogastric feeding tube. Link between theory and practice will be explored. Highlighting the value of low fidelity simulation and peer assessment to enhance skills and competencies.
Resumo:
The volume aims at providing an outlet for some of the best papers presented at the 15th Annual Conference of the African Econometric Society, which is one of the “chapters” of the International Econometric Society. Many of these papers represent the state of the art in financial econometrics and applied econometric modeling, and some also provide useful simulations that shed light on the models' ability to generate meaningful scenarios for forecasting and policy analysis.