844 resultados para Divergence estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctor en Ingeniería Eléctrica) UANL, 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette étude a pour but de tester si l’ajout de variables biomécaniques, telles que celles associées à la morphologie, la posture et l’équilibre, permet d’améliorer l’efficacité à dissocier 29 sujets ayant une scoliose progressive de 45 sujets ayant une scoliose non progressive. Dans une étude rétrospective, un groupe d’apprentissage (Cobb: 27,1±10,6°) a été utilisé avec cinq modèles faisant intervenir des variables cliniques, morphologiques, posturales et d’équilibre et la progression de la scoliose. Un groupe test (Cobb: 14,2±8,3°) a ensuite servit à évaluer les modèles dans une étude prospective. Afin d’établir l’efficacité de l’ajout de variables biomécaniques, le modèle de Lonstein et Carlson (1984) a été utilisé à titre d’étalon de mesures. Le groupe d’apprentissage a été utilisé pour développer quatre modèles de classification. Le modèle sans réduction fut composé de 35 variables tirées de la littérature. Dans le modèle avec réduction, une ANCOVA a servit de méthode de réduction pour passer de 35 à 8 variables et l’analyse par composantes principales a été utilisée pour passer de 35 à 7 variables. Le modèle expert fut composé de huit variables sélectionnées d’après l’expérience clinque. L’analyse discriminante, la régression logistique et l’analyse par composantes principales ont été appliquées afin de classer les sujets comme progressifs ou non progressifs. La régression logistique utilisée avec le modèle sans réduction a présenté l’efficience la plus élevée (0,94), tandis que l’analyse discriminante utilisée avec le modèle expert a montré l’efficience la plus faible (0,87). Ces résultats montrent un lien direct entre un ensemble de paramètres cliniques et biomécaniques et la progression de la scoliose idiopathique. Le groupe test a été utilisé pour appliquer les modèles développés à partir du groupe d’apprentissage. L’efficience la plus élevée (0,89) fut obtenue en utilisant l’analyse discriminante et la régression logistique avec le modèle sans réduction, alors que la plus faible (0,78) fut obtenue en utilisant le modèle de Lonstein et Carlson (1984). Ces valeurs permettent d’avancer que l’ajout de variables biomécaniques aux données cliniques améliore l’efficacité de la dissociation entre des sujets scoliotiques progressifs et non progressifs. Afin de vérifier la précision des modèles, les aires sous les courbes ROC ont été calculées. L’aire sous la courbe ROC la plus importante (0,93) fut obtenue avec l’analyse discriminante utilisée avec le modèle sans réduction, tandis que la plus faible (0,63) fut obtenue avec le modèle de Lonstein et Carlson (1984). Le modèle de Lonstein et Carlson (1984) n’a pu séparer les cas positifs des cas négatifs avec autant de précision que les modèles biomécaniques. L’ajout de variables biomécaniques aux données cliniques a permit d’améliorer l’efficacité de la dissociation entre des sujets scoliotiques progressifs et non progressifs. Ces résultats permettent d’avancer qu’il existe d’autres facteurs que les paramètres cliniques pour identifier les patients à risque de progresser. Une approche basée sur plusieurs types de paramètres tient compte de la nature multifactorielle de la scoliose idiopathique et s’avère probablement mieux adaptée pour en prédire la progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'un des modèles d'apprentissage non-supervisé générant le plus de recherche active est la machine de Boltzmann --- en particulier la machine de Boltzmann restreinte, ou RBM. Un aspect important de l'entraînement ainsi que l'exploitation d'un tel modèle est la prise d'échantillons. Deux développements récents, la divergence contrastive persistante rapide (FPCD) et le herding, visent à améliorer cet aspect, se concentrant principalement sur le processus d'apprentissage en tant que tel. Notamment, le herding renonce à obtenir un estimé précis des paramètres de la RBM, définissant plutôt une distribution par un système dynamique guidé par les exemples d'entraînement. Nous généralisons ces idées afin d'obtenir des algorithmes permettant d'exploiter la distribution de probabilités définie par une RBM pré-entraînée, par tirage d'échantillons qui en sont représentatifs, et ce sans que l'ensemble d'entraînement ne soit nécessaire. Nous présentons trois méthodes: la pénalisation d'échantillon (basée sur une intuition théorique) ainsi que la FPCD et le herding utilisant des statistiques constantes pour la phase positive. Ces méthodes définissent des systèmes dynamiques produisant des échantillons ayant les statistiques voulues et nous les évaluons à l'aide d'une méthode d'estimation de densité non-paramétrique. Nous montrons que ces méthodes mixent substantiellement mieux que la méthode conventionnelle, l'échantillonnage de Gibbs.