926 resultados para Discrete Mathematics in Computer Science
Resumo:
The sharing of near real-time traceability knowledge in supply chains plays a central role in coordinating business operations and is a key driver for their success. However before traceability datasets received from external partners can be integrated with datasets generated internally within an organisation, they need to be validated against information recorded for the physical goods received as well as against bespoke rules defined to ensure uniformity, consistency and completeness within the supply chain. In this paper, we present a knowledge driven framework for the runtime validation of critical constraints on incoming traceability datasets encapuslated as EPCIS event-based linked pedigrees. Our constraints are defined using SPARQL queries and SPIN rules. We present a novel validation architecture based on the integration of Apache Storm framework for real time, distributed computation with popular Semantic Web/Linked data libraries and exemplify our methodology on an abstraction of the pharmaceutical supply chain.
Resumo:
In this paper we show how event processing over semantically annotated streams of events can be exploited, for implementing tracing and tracking of products in supply chains through the automated generation of linked pedigrees. In our abstraction, events are encoded as spatially and temporally oriented named graphs, while linked pedigrees as RDF datasets are their specific compositions. We propose an algorithm that operates over streams of RDF annotated EPCIS events to generate linked pedigrees. We exemplify our approach using the pharmaceuticals supply chain and show how counterfeit detection is an implicit part of our pedigree generation. Our evaluation results show that for fast moving supply chains, smaller window sizes on event streams provide significantly higher efficiency in the generation of pedigrees as well as enable early counterfeit detection.
Resumo:
Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.
Resumo:
Our research focused on testing various characteristics of pairwise comparison (PC) matrices in controlled experiments. About 270 students have been involved in the test exercises and the final pool contained 450 matrices. Our team conducted experiments with matrices of different size obtained from different types of MADM problems. The matrix elements have been generated by different questioning orders, too. The cases have been divided into 18 subgroups according to the key factors to be analyzed. The testing environment made it possible to analyze the dynamics of inconsistency as the number of elements increased in a given case. Various types of inconsistency indices have been applied. The consequent behavior of the decision maker has also been analyzed in case of incomplete matrices using indicators to measure the deviation from the final ranking of alternatives and from the final score vector.
Resumo:
This is a follow up to "Solution of the least squares method problem of pairwise comparisons matrix" by Bozóki published by this journal in 2008. Familiarity with this paper is essential and assumed. For lower inconsistency and decreased accuracy, our proposed solutions run in seconds instead of days. As such, they may be useful for researchers willing to use the least squares method (LSM) instead of the geometric means (GM) method.
Resumo:
An important variant of a key problem for multi-attribute decision making is considered. We study the extension of the pairwise comparison matrix to the case when only partial information is available: for some pairs no comparison is given. It is natural to define the inconsistency of a partially filled matrix as the inconsistency of its best, completely filled completion. We study here the uniqueness problem of the best completion for two weighting methods, the Eigen-vector Method and the Logarithmic Least Squares Method. In both settings we obtain the same simple graph theoretic characterization of the uniqueness. The optimal completion will be unique if and only if the graph associated with the partially defined matrix is connected. Some numerical experiences are discussed at the end of the paper.
Resumo:
Pairwise comparison matrices are often used in Multi-attribute Decision Making forweighting the attributes or for the evaluation of the alternatives with respect to a criteria. Matrices provided by the decision makers are rarely consistent and it is important to index the degree of inconsistency. In the paper, the minimal number of matrix elements by the modification of which the pairwise comparison matrix can be made consistent is examined. From practical point of view, the modification of 1, 2, or, for larger matrices, 3 elements seems to be relevant. These cases are characterized by using the graph representation of the matrices. Empirical examples illustrate that pairwise comparison matrices that can be made consistent by the modification of a few elements are present in the applications.
Resumo:
Nowadays, the scientific and social significance of the research of climatic effects has become outstanding. In order to be able to predict the ecological effects of the global climate change, it is necessary to study monitoring databases of the past and explore connections. For the case study mentioned in the title, historical weather data series from the Hungarian Meteorological Service and Szaniszló Priszter’s monitoring data on the phenology of geophytes have been used. These data describe on which days the observed geophytes budded, were blooming and withered. In our research we have found that the classification of the observed years according to phenological events and the classification of those according to the frequency distribution of meteorological parameters show similar patterns, and the one variable group is suitable for explaining the pattern shown by the other one. Furthermore, our important result is that the dates of all three observed phenophases correlate significantly with the average of the daily temperature fluctuation in the given period. The second most often significant parameter is the number of frosty days, this also seem to be determinant for all phenophases. Usual approaches based on the temperature sum and the average temperature don’t seem to be really important in this respect. According to the results of the research, it has turned out that the phenology of geophytes can be well modelled with the linear combination of suitable meteorological parameters
Resumo:
With the latest development in computer science, multivariate data analysis methods became increasingly popular among economists. Pattern recognition in complex economic data and empirical model construction can be more straightforward with proper application of modern softwares. However, despite the appealing simplicity of some popular software packages, the interpretation of data analysis results requires strong theoretical knowledge. This book aims at combining the development of both theoretical and applicationrelated data analysis knowledge. The text is designed for advanced level studies and assumes acquaintance with elementary statistical terms. After a brief introduction to selected mathematical concepts, the highlighting of selected model features is followed by a practice-oriented introduction to the interpretation of SPSS1 outputs for the described data analysis methods. Learning of data analysis is usually time-consuming and requires efforts, but with tenacity the learning process can bring about a significant improvement of individual data analysis skills.
Resumo:
An alternating treatment design was used to compare the effects of three student response conditions (Clicking, Repeating, and Listening) during computer-assisted instruction on social-studies facts learning and maintenance. Results showed that all students learned and maintained more social-studies facts taught in the Repeating condition followed by the Clicking condition.
Resumo:
The purpose of this study was to compare the effects of three student response conditions during computer-assisted instruction on the acquisition and maintenance of social-studies facts. Two of the conditions required active student responding (ASR), whereas the other required an on-task (OT) response. Participants were five fifth-grade students, with learning disabilities enrolled in a private school. An alternating treatments design with a best treatments phase was used to compare the effects of the response procedures on three major dependent measures: same-day tests, next-day tests, and maintenance tests. ^ Each week for six weeks, participants were provided daily one-to-one instruction on sets of 21 unknown social-studies facts using a hypermedia computer program, with a new set of facts being practiced each week. Each set of 21 facts was divided randomly into three conditions: Clicking-ASR, Repeating-ASR, and Listening-OT. Hypermedia lesson began weekly with the concept introduction lesson, followed by practice and testing. Practice and testing occurred four days per week, per set. During Clicking-ASR, student practice involved the selection of a social-studies response by clicking on an item with the mouse on the hypermedia card. Repeating-ASR instruction required students to orally repeat the social-studies facts when prompted by the computer. During Listening-OT, students listened to the social-studies facts being read by the computer. During weeks seven and eight, instruction occurred with seven unknown facts using only the best treatment. ^ Test results show that all for all 5 students, the Repeating-ASR practice procedure resulted in more social-studies facts stated correctly on same-day tests, next-day tests, and one-and two-week maintenance tests. Clicking-ASR was the next most effective procedure. During the seventh and eighth week of instruction when only the best practice condition was implemented, Repeating-ASR produced higher scores than all conditions (including Repeating-ASR) during the first six weeks of the study. ^ The results lend further support to the growing body of literature that demonstrates the positive relation between ASR and student achievement. Much of the ASR literature has focused on the effects of increased ASR during teacher-led or peer-mediated instruction. This study adds a dimension to that research in that it demonstrated the importance of ASR during computer-assisted instruction and further suggests that the type of ASR used during computer-assisted instruction may influence learning. Future research is needed to investigate the effectiveness of other types of ASR during computer-assisted instruction and to identify other fundamental characteristics of an effective computer-assisted instruction. ^
Resumo:
The purpose of this thesis was to explore the boundary between human and other created by virtual worlds in contemporary science fiction novels. After a close reading of the three novels: Surface Detail, Existence, and Lady of Mazes, and the application of contemporary literary theories, the boundary presented itself and led to the discovery of where the human becomes other. The human becomes other when it becomes lost to the virtual world and no longer exists or interacts with material reality. Each of the primary texts exhibits both virtual reality and humanity in different ways, and each is explored to find where humanity falls apart. Overall, when these theories are applied to real life there is no real way to avoid the potential for fully immersive virtual worlds, but there are ways to avoid their alienating effects.
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Postprint