992 resultados para Direct manipulation
Resumo:
The National Oceanic and Atmospheric Administration Center for Ocean Analysis and Prediction (COAP) in Monterey, California, has assembled information to suggest how NOAA's facilities for observing the ocean and atmosphere might be applied to studies of paleoclimate. This effort resulted, indirectly, in several projects that combine direct observations of the ocean/atmosphere system with studies of past climate of the Pacific region. This article considers concepts that link the two kinds of investigations. It defines the thesis that direct observation of systems that generate paleoclimatic information is the nexus upon which understanding of climatic variability begins and upon which prediction of climate and global change depends.
Resumo:
Human ingenuity has made it possible to advent the chromosome manipulation techniques to produce individuals with differing genomic status in a number of fish using various causal agents such as physical shocks (temperature or hydrostatic pressure), chemical (endomitotics) and anesthetic treatments either to suppress the second meiotic division shortly after fertilization of eggs or to prevent the first mitotic division shortly prior to mitotic cleavage formation. This results in the induction of polyploidy (triploidy and tetraploidy), gynogenesis (both meiotic and mitotic leading to clonal lines) and androgenesis in fish population. The rationale for the induction of such ploidy in fish has been its potential for generating sterile individuals, rapidly inbred lines and masculinized fish, which could be of benefit to fish farming and aquaculture. In this paper, these are critically reviewed and the implication of recently developed chromosome manipulation techniques to various fin fishes is discussed.
Resumo:
Hydrogenated amorphous silicon (a-Si:H) thin films have been deposited from silane using a novel photo-enhanced decomposition technique. The system comprises a hydrogen discharge lamp contained within the reaction vessel; this unified approach allows high energy photon excitation of the silane molecules without absorption by window materials or the need for mercury sensitisation. The film growth rates (exceeding 4 Angstrom/s) and material properties obtained are comparable to those of films produced by plasma-enhanced CVD techniques. The reduction of energetic charged particles in the film growth region should enable the fabrication of cleaner semiconductor/insulator interfaces in thin-film transistors.