957 resultados para Diabetes, gestational
Resumo:
Vascular endothelial growth factor (VEGF) is reported to be implicated in the development of diabetic nephropathy. We performed a case-control study to determine if VEGF-2578C -> A, VEGF-1499C -> T, and VEGF-635G -> C single-nucleotide polymorphisms (SNPs) in the VEGF gene are associated with predisposition to diabetic nephropathy in type I diabetes. Genomic DNA was obtained from Irish type I diabetic individuals with nephropathy (cases, n=242) and those without nephropathy (controls, n=301), in addition to 400 healthy control samples. These samples were genotyped for the three SNPs using TaqMan or Pyrosequencing technology. Chi-squared analyses revealed no significant differences in genotype or allele frequencies in cases versus controls for VEGF-2578C -> A (genotype, P=.58; allele, P=.52) and VEGF-635G -> C (genotype, P=.58; allele, P=.33). However, a positive association with diabetic nephropathy was observed for the VEGF-1499T allele in the Northern Ireland population (P
Resumo:
Despite familial clustering of nephropathy and retinopathy severity in type 1 diabetes, few gene variants have been consistently associated with these outcomes.
Resumo:
Diabetic nephropathy (DN) is the primary cause of morbidity and mortality in patients with type 1 diabetes mellitus (T1DM) and affects about 30% of these patients. We have previously localized a DN locus on chromosome 3q with suggestive linkage in Finnish individuals. Linkage to this region has also been reported earlier by several other groups. To fine map this locus, we conducted a multistage case-control association study in T1DM patients, comprising 1822 cases with nephropathy and 1874 T1DM patients free of nephropathy, from Finland, Iceland, and the British Isles. At the screening stage, we genotyped 3072 tag SNPs, spanning a 28 Mb region, in 234 patients and 215 controls from Finland. SNPs that met the significance threshold of p
Resumo:
Aim: Two Type I diabetes and control group comparator studies were conducted to assess the reproducibility of FMD and to analyse blood flow data normally discarded during FMD measurement.
Design: The studies were sequential and differed only with regard to operator and ultrasound machine. Seventy-two subjects with diabetes and 71 controls were studied in total.
Methods: Subjects had FMD measured conventionally. Blood velocity waveforms were averaged over 10 pulses post forearm ischaemia and their component frequencies analysed using the wavelet transform, a mathematical tool for waveform analysis. The component frequencies were grouped into 11 bands to facilitate analysis.
Results: Subjects were well-matched between studies. In Study 1, FMD was significantly impaired in subjects with Type I diabetes vs. controls (median 4.35%, interquartile range 3.10-4.80 vs. 6.50, 4.79-9.42, P < 0.001). No differences were detected between groups in Study 2, however. However, analysis of blood velocity waveforms yielded significant differences between groups in two frequency bands in each study.
Conclusions: This report highlights concerns over the reproducibility of FMD measures. Further work is required to fully elucidate the role of analysing velocity waveforms after forearm ischaemia.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
Resumo:
Background: The incidence rates of childhood onset type 1 diabetes are almost universally increasing across the globe but the aetiology of the disease remains largely unknown. We investigated whether birth order is associated with the risk of childhood diabetes by performing a pooled analysis of previous studies. Methods: Relevant studies published before January 2010 were identified from MEDLINE, Web of Science and EMBASE. Authors of studies provided individual patient data or conducted pre-specified analyses. Meta-analysis techniques were used to derive combined odds ratios (ORs), before and after adjustment for confounders, and investigate heterogeneity. Results: Data were available for 6 cohort and 25 case-control studies, including 11 955 cases of type 1 diabetes. Overall, there was no evidence of an association prior to adjustment for confounders. After adjustment for maternal age at birth and other confounders, a reduction in the risk of diabetes in second-or later born children became apparent [fully adjusted OR=0.90 95% confidence interval (CI) 0.83-0.98; P=0.02] but this association varied markedly between studies (I 2=67%). An a priori subgroup analysis showed that the association was stronger and more consistent in children <5years of age (n=25 studies, maternal age adjusted OR=0.84 95% CI 0.75, 0.93; I 2=23%). Conclusion: Although the association varied between studies, there was some evidence of a lower risk of childhood onset type 1 diabetes with increasing birth order, particularly in children aged <5 years. This finding could reflect increased exposure to infections in early life in later born children. Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2010; all rights reserved.
Resumo:
Previous research has demonstrated that disordered eating among adolescent females with type 1 diabetes (T1D) is related to the weight loss and eating attitudes of their mothers. The present research sought to examine the extent to which female adolescents’ perceptions of their mother’s weight loss and eating attitudes and behaviours explained the adolescents’ disordered eating attitudes and behaviours. Female adolescents with T1D and their mothers completed self-report questionnaires during outpatient clinic visits. Adolescents’ perceptions of their mother’s frequency of dieting behaviour and the importance of thinness to their mother were significant covariates of the adolescents’ body dissatisfaction and drive for thinness. Attitudes about disordered eating were also explained by different elements of family cohesion and mothers’ attitudes to weight loss. Routinely assessing perceptions of family and maternal attitudes and adopting a systemic approach to the care of adolescent females with T1D may help with the identification and management of these at-risk individuals.
Resumo:
OBJECTIVE: To clarify whether the increase in childhood type 1 diabetes is mirrored by a decrease in older age-groups, resulting in younger age at diagnosis.
RESEARCH DESIGN AND METHODS: We used data from two prospective research registers, the Swedish Childhood Diabetes Register, which included case subjects aged 0-14.9 years at diagnosis, and the Diabetes in Sweden Study, which included case subjects aged 15-34.9 years at diagnosis, covering birth cohorts between 1948 and 2007. The total database included 20,249 individuals with diabetes diagnosed between 1983 and 2007. Incidence rates over time were analyzed using Poisson regression models.
RESULTS: The overall yearly incidence rose to a peak of 42.3 per 100,000 person-years in male subjects aged 10-14 years and to a peak of 37.1 per 100,000 person-years in female subjects aged 5-9 years and decreased thereafter. There was a significant increase by calendar year in both sexes in the three age-groups <15 years; however, there were significant decreases in the older age-groups (25- to 29-years and 30- to 34-years age-groups). Poisson regression analyses showed that a cohort effect seemed to dominate over a time-period effect.
CONCLUSIONS: Twenty-five years of prospective nationwide incidence registration demonstrates a clear shift to younger age at onset rather than a uniform increase in incidence rates across all age-groups. The dominance of cohort effects over period effects suggests that exposures affecting young children may be responsible for the increasing incidence in the younger age-groups.