869 resultados para Development and learning conceptions
Resumo:
The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.
Resumo:
An indirect enzyme linked immunoassay (ELISA-I) was developed and standardized for the serological diagnosis of classical swine fever (CSF). For the comparison, nine hundred and thirty-seven swine serum samples were tested by serum neutralization followed by immunoperoxidase staining (NPLA), considered as the standard. Of these, 223 were positive and 714 negative for neutralizing antibodies to classical swine fever virus (CSFV). In relation to the NPLA, the ELISA-I presented a 98.2% sensitivity; 92.86% specificity, 81.11% positive predictive value, 99.4% negative predictive value and a 94.1% precision. Statistical analysis showed a very strong correlation (r=0,94) between both tests. When compared to a commercially available ELISA kit, the performance of both, in relation to the NPLA, was similar. It was concluded that the ELISA-I is suitable for large scale screening of antibodies to classical swine fever virus, although it does not distinguish antibodies to classical swine fever virus from those induced by other pestiviruses.
Resumo:
-
Resumo:
-
Resumo:
Academic research on services and innovations on services has significantly grown during recent years. So far research concerning management of knowledge intensive work on service development activities is very limited. The objective of this study was to examine knowledge integration practices that support service innovation development and to the best of knowledge such studies have not been previously published in academic literature. In the theoretical part of the study a review of state‐of‐the‐art literature was conducted, research gap was indicated and a framework for analysis was built. In the empirical part an explorative comparative multi‐case study was carried out in KIBS sector. Four companies were selected and four service development projects were inspected. The service development activities and knowledge integration practices were identified. The cases were carefully compared and results formed. The empirical results indicated that service innovation development is partly linear and partly incremental flow of activities where knowledge integration practices have important role supporting the planning and execution of tasks. Knowledge integration practices supporting planning and workshops are close interaction, interpretation, project planning and sequencing of work tasks. The identified knowledge integration practices supporting building service solution were careful role and competence management, routines and common knowledge. The main implication is that to manage knowledge intensive service innovation development a firm should carefully develop and choose relevant knowledge integration practices to support the service development activities.
Resumo:
Porcine circovirus 2 (PCV2) is generally associated with the porcine circovirosis syndrome, which is considered an important disease of swine and has potentially serious economic impact on the swine industry worldwide. This article describes the construction of a recombinant plasmid expressing the PCV2 structural protein and the evaluation of cellular and humoral immune responses produced by this recombinant vaccine in BALB/c mice. The vaccine candidate was obtained and analyzed in vivo, in an effort to determine the ability to induce a specific immune response in mice. DNA was extracted from a Brazilian PCV2 isolate and the gene coding for Cap protein was amplified by PCR and inserted into an expression plasmid. Groups of BALB/c mice were inoculated intra-muscularly and intradermally in a 15-day interval, with 100 µg and 50 µg of the vaccine construct, respectively. Another group was inoculated intramuscularly with 100 µg of empty plasmid, corresponding to the control group. Seroconversion and cellular response in BALB/c mice were compared and used for vaccine evaluation. Seroconversion was analyzed by ELISA. After a series of 3 immunizations the spleen cells of the immunized animals were used to perform lymphocyte proliferation assays. Seroconversion to PCV2 was detected by ELISA in the animals inoculated with the vaccine construct when compared with control groups. Lymphocyte proliferation assays showed a stronger cell proliferation in the inoculated animals compared with the control group. Thus, the vaccine candidate construct demonstrated to be able to induce both humoral and cellular responses in inoculated mice.
Resumo:
Cells communicate, or signal, with each other constantly to ensure proper functioning of tissues and organs. Cell signaling is often performed by interplay of receptors and ligands that bind these receptors. ErbB receptors (epidermal growth factor receptors, EGFR, HER) bind extracellular growth factors and transduce these signals inside of cells. ErbB dysfunction promotes carcinogenesis, and also results in numerous defects during normal development. This study focused on the functions of one member of the ErbB receptor family, ErbB4, and growth factor, neuregulin-1 (NRG-1), that can bind and activate ErbB4. This study aimed to find novel functions of ErbB4 and NRG-1. Hypoxia, or deficiency of oxygen, is common in cancer and ischemic conditions. One of the key findings of the work was the identification and characterization of a cross-talk between ErbB4 and Hypoxia-inducible factor 1α (HIF-1α), the central mediator of hypoxia signaling. ErbB4 activation by NRG-1 was found to increase HIF-1α activity. Interestingly, this regulation occurred in reciprocal manner as HIF-1α was also able to increase protein levels of NRG-1 and ErbB4. Moreover, expression of NRG-1 and ErbB4 was associated with HIF activity in vivo in human clinical samples and in mice. Reduction of functional ErbB4 in developing zebrafish embryos resulted in defects in development of the skeletal muscles. To study ErbB4 functions in pathological situation in humans, clinical samples of serous ovarian carcinoma were analyzed using tissue microarrays and real-time RT-PCR. A specific isoform of ErbB4, CYT-1, was associated with poor survival in serous ovarian cancer and increased anchorage independent growth of ovarian cancer cells in vitro. These observations demonstrate that ErbB4 and NRG-1 are essential regulators of cellular response to hypoxia, of development, and of ovarian carcinogenesis.
Resumo:
The morphofunctional aspects of oogenesis of Poecilia vivipara were studied aiming to understand the reproductive biology and development of species with internal fertilization, particularly those belonging to the family Poeciliidae. The stages of gonadal maturation and follicular development were characterized using mesoscopic, histological, histochemical, and lectin cytochemical analyses. Through mesoscopic evaluation the ovarian development was classified in six phases of development: immature, in maturation I, in maturation II, mature I, mature II, and post-spawn. Based on microscopic examination of the ovaries, we identified the presence of oocytes types I and II during the previtellogenic phase and types III, IV, and V during the vitellogenic phase. As oogenesis proceeded the oocyte cytosol increased in volume and presented increased cytoplasmic granule accumulation, characterizing vitellogenesis. The zona radiata (ZR) increased in thickness and complexity, and the follicular epithelium, which was initially thin and consisting of pavimentous cells, in type III oocytes exhibited cubic simple cells. The histochemical and cytochemical analyses revealed alterations in the composition of the molecular structures that form the ovarian follicle throughout the gonadal development. Our study demonstrated differences in the female reproductive system among fish species with internal and external fertilization and we suggest P. vivipara can be used as experimental model to test environmental toxicity.
Resumo:
Asthma and allergy are common diseases and their prevalence is increasing. One of the hypotheses that explains this trend is exposure to inhalable chemicals such as traffi c-related air pollution. Epidemiological research supports this theory, as a correlation between environmental chemicals and allergic respiratory diseases has been found. In addition to ambient airborne particles, one may be exposed to engineered nanosized materials that are actively produced due to their favorable physico-chemical properties compared to their bulk size counterparts. On the cellular level, improper activity of T helper (Th) cells has been connected to allergic reactions. Th cells can differentiate into functionally different effector subsets, which are identifi ed according to their characteristic cytokine profi les resulting in specifi c ability to communicate with other cells. Th2 cells activate humoral immunity and stimulate eradication of extracellular pathogens. However, persistent predominance of Th2 cells is involved in a development of number of allergic diseases. The cytokine environment at the time of antigen recognition is the major factor determining the polarization of a naïve Th cell. Th2 cell differentiation is initiated by IL4, which signals via transcription factor STAT6. Although the importance of this pathway has been evaluated in the mouse studies, the signaling components involved have been largely unknown. The aim of this thesis was to identify molecules, which are under the control of IL4 and STAT6 in Th cells. This was done by using system-level analysis of STAT6 target genes at genome, mRNA and protein level resulting in identifi cation of various genes previously not connected to Th2 cell phenotype acquisition. In the study, STAT6-mediated primary and secondary target genes were dissection from each other and a detailed transcriptional kinetics of Th2 cell polarization of naïve human CD4+ T cells was collected. Integration of these data revealed the hierarchy of molecular events that mediates the differentiation towards Th2 cell phenotype. In addition, the results highlighted the importance of exploiting proteomics tools to complement the studies on STAT6 target genes identifi ed through transcriptional profi ling. In the last subproject, the effects of the exposure with ZnO and TiO2 nanoparticles was analyzed in Jurkat T cell line and in primary human monocyte-derived macrophages and dendritic cells to evaluate their toxicity and potential to cause infl ammation. Identifi cation of ZnO-derived gene expression showed that the same nanoparticles may elicit markedly distinctive responses in different cell types, thus underscoring the need for unbiased profi ling of target genes and pathways affected. The results gave additional proof that the cellular response to nanosized ZnO is due to leached Zn2+ ions. The approach used in ZnO and TiO2 nanoparticle study demonstrated the value of assessing nanoparticle responses through a toxicogenomics approach. The increased knowledge of Th2 cell signaling will hopefully reveal new therapeutic nodes and eventually improve our possibilities to prevent and tackle allergic infl ammatory diseases.
Resumo:
This paper reports on the development and validation of a loop-mediated isothermal amplification assay (LAMP) for the rapid and specific detection of Actinobacillus pleuropneumoniae (A. pleuropneumoniae). A set of six primers were designed derived from the dsbE-like gene of A.pleuropneumoniae and validate the assay using 9 A. pleuropneumoniae reference/field strains, 132 clinical isolates and 9 other pathogens. The results indicated that positive reactions were confirmed for all A. pleuropneumoniae strains and specimens by LAMP at 63ºC for 60 min and no cross-reactivity were observed from other non-A.pleuropneumoniae including Haemophilus parasuis, Escherichia coli, Pasteurella multocida, Bordetella bronchiseptica, Streptococcus suis, Salmonella enterica, Staphylococcus, porcine reproductive and respiratory syndrome virus (PRRSV), and Pseudorabies virus. The detection limit of the conventional PCR was 10² CFU per PCR test tube, while that of the LAMP was 5 copies per tube. Therefore, the sensitivity of LAMP was higher than that of PCR. Moreover, the LAMP assay provided a rapid yet simple test of A. pleuropneumoniae suitable for laboratory diagnosis and pen-side detection due to ease of operation and the requirement of only a regular water bath or heat block for the reaction.
Resumo:
Conidiobolomycosis is a granulomatous disease caused by the fungus Conidiobolus spp. in humans and animals. Traditional technique for diagnosis of the disease is isolation of the agent associated with the presence of typical clinical signs and pathological conditions. The aim of this study was to describe the development of a specific polymerase chain reaction (PCR) test for Conidiobolus lamprauges to detect the fungus in clinical samples. Samples from suspected animals were collected and submitted to isolation, histopathological analysis and amplification by PCR. DNA from tissues was subjected to PCR with fungi universal primers 18S rDNA gene, and specific primers were designed based on the same gene in C. lamprauges that generated products of about 540 bp and 222 bp respectively. The culture was positive in 26.6% of clinical samples. The PCR technique for C. lamprauges showed amplification of DNA from fresh tissues (80%) and paraffin sections (44.4%). In conclusion, the PCR technique described here demonstrated a high sensitivity and specificity for detection of fungal DNA in tissue samples, providing a tool for the rapid diagnosis of C. lamprauges.
Resumo:
Tämä työ tehtiin Kone Industrial Oy:lle Major Projects yksikköön, laatuosastolle. Kone Major Projects yksikkö keskittyy erikoisiin ja suuriin hissi- ja liukuporras projekteihin. Työn tavoitteena oli luoda harmonisoitu prosessi hissikomponenttien laaduntarkkailua varten sekä tarkastella ja vertailla kustannussäästöjä, jota tällä uudella prosessilla voidaan saavuttaa. Tavoitteena oli saavuttaa 80-prosentin kustannussäästöt laatukustannuksissa uuden laatuprosessin avulla. Työn taustana ja tutkimusongelmana ovat lisääntyneet erikoisprojektit ja niiden myötä lisääntynyt laaduntarkkailun tarve. Ongelmana laaduntarkkailussa voitiin pitää harmonisoidun ja selkeän prosessin puuttumista C-prosessikomponenttien valmistuksessa. Lisäksi kehitysprosessin aikana luotiin vanhojen työkalujen pohjalta keskeinen laaduntarkkailutyökalu, CTQ-työkalu. Työssä käsitellään ensin Konetta yhtiönä ja selvitetään Koneen keskeisimmät prosessit työn taustaksi. Teoria osuudessa käsitellään prosessin kehitykseen liittyviä teorioita sekä yleisiä laatukäsitteitä ja esitetään teorioita laadun asemasta nykypäivänä. Lopuksi käsitellään COQ eli laatukustannusten teoriaa ja esitellään teoria PAF-analyysille, jota käytetään työssä laatukustannusten vertailuun case esimerkin avulla. Työssä kuvataan CTQ prosessin luominen alusta loppuun ja case esimerkin avulla testataan uutta CTQ prosessia pilottihankkeessa. Tässä case esimerkissä projektin bracket eli johdekiinnitysklipsi tuotetaan uuden laatuprosessin avulla sekä tehdään kustannusvertailu saman projektin toisen bracketin kanssa, joka on tuotettu ennen uuden laatuprosessin implementoimista. Työn lopputuloksena CTQ prosessi saatiin luotua ja sitä pystyttiin testaamaan käytännössä case esimerkin avulla. Tulosten perusteella voidaan sanoa, että CTQ prosessin käyttö vähentää laatukustannuksia huomattavasti ja helpottaa laadunhallintaa C-prosessikomponenttien tuotannossa.
Resumo:
The capabilities and thus, design complexity of VLSI-based embedded systems have increased tremendously in recent years, riding the wave of Moore’s law. The time-to-market requirements are also shrinking, imposing challenges to the designers, which in turn, seek to adopt new design methods to increase their productivity. As an answer to these new pressures, modern day systems have moved towards on-chip multiprocessing technologies. New architectures have emerged in on-chip multiprocessing in order to utilize the tremendous advances of fabrication technology. Platform-based design is a possible solution in addressing these challenges. The principle behind the approach is to separate the functionality of an application from the organization and communication architecture of hardware platform at several levels of abstraction. The existing design methodologies pertaining to platform-based design approach don’t provide full automation at every level of the design processes, and sometimes, the co-design of platform-based systems lead to sub-optimal systems. In addition, the design productivity gap in multiprocessor systems remain a key challenge due to existing design methodologies. This thesis addresses the aforementioned challenges and discusses the creation of a development framework for a platform-based system design, in the context of the SegBus platform - a distributed communication architecture. This research aims to provide automated procedures for platform design and application mapping. Structural verification support is also featured thus ensuring correct-by-design platforms. The solution is based on a model-based process. Both the platform and the application are modeled using the Unified Modeling Language. This thesis develops a Domain Specific Language to support platform modeling based on a corresponding UML profile. Object Constraint Language constraints are used to support structurally correct platform construction. An emulator is thus introduced to allow as much as possible accurate performance estimation of the solution, at high abstraction levels. VHDL code is automatically generated, in the form of “snippets” to be employed in the arbiter modules of the platform, as required by the application. The resulting framework is applied in building an actual design solution for an MP3 stereo audio decoder application.