929 resultados para Derugin Basin barite mountains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics and distribution patterns of detrital minerals (0.063 similar to 0.125 mm) in marine sediments provide a significant indicator for the identification of the origin of sediment. The detrital mineral composition of 219 surface sediment samples was analysed to identify the distribution of sediments within the western Philippine Sea. The area can be divided into three mineral provinces: ( 1) province east of the Philippine Trench, the detrital minerals in this province are mainly composed of calcareous or siliceous organisms, with the addition of volcanogenic minerals from an adjacent island arc; (II) middle mineral province, clastic minerals including feldspar, quartz and colorless volcanic glass, sourced from seamounts with intermediate-acid volcanic rock, or erupting intermediate-acid volcano; (III) province west of the Palau-Kyushii Ridge, the matter provenance within this province is complex; the small quantity of feldspar and quartz may be sourced from seamounts or erupting volcano with intermediate - acid composition, with a component of volcanic scoria sourced from a volcano erupting on the Palau-Kyushu Ridge. it is suggested that, ( I) Biogenic debris of the study area is closely related to water depth, with the amount of biogenic debris controlled by carbonate lysocline. (2) Volcaniclastic matter derived from the adjacent island are can be entrained by oceanic currents and transported towards the abyssal basin over a short distance. The weathering products of volcanic rocks of the submarine plateau ( e. g. I Benham Plateau) and adjacent ridges provide an important source of detrital sedimentation, and the influence scope of them is constrained by the intensity of submarine weathering. (3) Terrigenous sediments from the continent of Asia and the adjacent Philippine island arc have little influence on the sedimentation of this study area, and the felsic mineral component is probably sourced from volcanic seamounts of intermediate-acid composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Qikou Depression is the largest hydrocarbon bearing depression in the western part of the Bohai bay basin, dominated by fan delta and lacustrine strata with volcanic and volcaniclastic rocks. In this study, the formation pressures and hydrochemistry of the formation water in the Qikou depression are investigated. It is found that a significant overpressure occurs in the Dongying (Ed) Formation and the first member (Est), the second member (Es2), the third member (Es3) of the Shahejie Formation. The pressure coefficients commonly range from 1.2 to 1.6 with the highest pressure coefficient being 1.7. The analysis of hydrochemistry data shows that the whole depression is dominated by NaHCO3 water type. The concentration of total dissolved solid (TDS) ranges from 2.13 to 53.16 g/L and shows a distinct vertical variation of salinity and ion ratios. High salinity water (TDS> 10 g/L) occurs below a depth of 2500 m, which coincides with the presence of the overpressured system. However, the increasing trend of TDS is diminished below 3500 m because the generation of organic acids in Qikou Depression is inhibited in the presence of overpressure. The analysis of the relationship among different ions indicates that the present-day characteristics of the formation water result from the albitization of feldspar and the dissolution of sodium-rich silicate minerals and halite in the different hydrochemical and pressure systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Polygonal faults were identified in Qiongdongnan Basin, South China Sea, by using the technique of time coherent slice and horizon flattening of high-resolution 3D seismic data. These polygonal faults occur in three tiers of the upper Meishan Formation and the Huangliu Formation. The faults have lengths of 150-1500 m, spacings of 50-3000 m, throws of 10-40 m and dips of 50-90 degrees. Tectonic evolution in the Qiongdongnan Basin can be divided into a rifted stage and a post-rifted stage. Tectonic faults are widely distributed in the rifted sequences, but are not well developed in the post-rifted stage. Few faults in the post-rifted sequences might suggest the absence of a migration pathway for hydrocarbon or other fluids. However, the existence of polygonal faults in the post-rifted sequences can serve as the pathway and promote the hydrocarbon migration and accumulation in the Qiongdongnan Basin during the post-rifted stage. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To look for gas hydrate, 22 multi-channel and 3 single-channel seismic lines on the East China Sea (ECS) shelf slope and at the bottom of the Okinawa Trough were examined. It was found that there was indeed bottom simulating reflector (BSR) occurrence, but it is very rare. Besides several BSRs, a gas seepage was also found. As shown by the data, both the BSR and gas seepage are all related with local geological structures, such as mud diapir, anticline, and fault-controlled graben-like structure. However, similar structural "anomalies" are quite common in the tectonically very active Okinawa Trough region, but very few of them have developed BSR or gas seepage. The article points out that the main reason is probably the low concentration of organic carbon of the sediment in this area. It was speculated that the rare occurrence of gas hydrates in this region is governed by structure-controlled fluid flow. Numerous faults and fractures form a network of high-permeability channels in the sediment and highly fractured igneous basement to allow fluid circulation and ventilation. Fluid flow in this tectonic environment is driven primarily by thermal buoyancy and takes place on a wide range of spatial scales. The fluid flow may play two roles to facilitate hydrate formation: to help gather enough methane into a small area and to modulate the thermal regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jiyang superdepression is one of the richest hydrocarbon accumulations in the Bohai Bay basin, eastern China. Comprehensive seismic methods have been used in buried hill exploration in Jiyang to describe these fractured reservoirs better. Accurate seismic stratigraphic demarcation and variable-velocity mapping were applied to reveal the inner structure of the buried hills and determine the nature of the structural traps more precisely. Based on the analysis of rock properties and the characteristics of well-developed buried hill reservoirs, we have successfully linked the geology and seismic response by applying seismic forward technology. Log-constrained inversion, absorption coefficient analysis and tectonic forward-inversion with FMI loggings were applied to analyse and evaluate the buried hill reservoirs and gave satisfying results. The reservoir prediction was successful, which confirmed that the comprehensive utilization of these methods can be helpful in the exploration of buried hill reservoirs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the latest seismic and geological data, tectonic subsidence of three seismic lines in the deepwater area of Pearl River Mouth Basin (PRMB), the northern South China Sea (SCS), is calculated. The result shows that the rifting process of study area is different from the typical passive continental margin basin. Although the seafloor spreading of SCS initiated at 32 Ma, the tectonic subsidence rate does not decrease but increases instead, and then decreases at about 23 Ma, which indicates that the rifting continued after the onset of seafloor spreading until about 23 Ma. The formation thickness exhibits the same phenomenon, that is the syn-rift stage prolonged and the post-rift thermal subsidence delayed. The formation mechanisms are supposed to be three: (1) the lithospheric rigidity of the northern SCS is weak and its ductility is relatively strong, which delayed the strain relaxation resulting from the seafloor spreading; (2) the differential layered independent extension of the lithosphere may be one reason for the delay of post-rift stage; and (3) the southward transition of SCS spreading ridge during 24 to 21 Ma and the corresponding acceleration of seafloor spreading rate then triggered the initiation of large-scale thermal subsidence in the study area at about 23 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triterpanes and steranes in condensates from the YA13-1 gas field, Qiongdongnan Basin, were monitored. The YA13-1 condensates have unusual biomarker distributions dominated by terpanes and steranes derived from higher plants. Anomalously abundant 1 got-oleanane and remarkably abundant bicadinanes are present in the YA13-1 condensates, whereas the 17alpha-hopane contents are extremely low. Taraxastane and significantly abundant 17alpha-diahopanes occur in the condensates. In addition, a number of unknown C-29 and C-30 pentacyclic triterpanes including previously unreported compounds were detected in the condensates, some of which are significantly abundant. The unknown compounds may be terrestrial biomarkers. C-29 homologues are relatively predominant among the regular and rearranged steranes. The diasterane concentrations are markedly higher than those of regular steranes. The maturity of the YA13-1 condensates is relatively high, at the peak to late oil generation stage (corresponding to 0.85-1.10% Ro), based on sterane and terpane and including bicadinane maturity parameters (i.e. T/(T-1 + R) and 2T/R bicadinane ratios). The above maturity assessment result is different from that based on diamondoid maturity parameters (%Ro = 1.60-1.70) [Org. Geochem. 25 (1996) 179], which can be explained by a contribution of hydrocarbons from two sources at different depths. The YA13-1 condensates were probably generated from the Yacheng and Lingshui coal-bearing source rocks buried both in the Qiongdongnan Basin (3400-5000 m) and in the Yinggehai Basin (>5000 m). The possible contribution of lower maturity hydrocarbons from the Yacheng and Lingshui Formations (3400-4100 m) in the Qiongdongnan Basin to the YA13-1 gases and condensates should not be neglected. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six compounds were isolated from the 75% ethanol extract of Nitraria tangutorum seed.On the basis of spectroscopic methods including 1H NMR,13C NMR and ESI-MS and comparison with literature,their structures were elucidated as daucosterol(1),4-hydroxypipecolic acid(2),quercetin(3),allantoin(4),1,2,3,4-tetrahydro-1-methyl-β-carboline-3-carboxylic acid(5) and L-tyrosine(6).Compounds 1,2,3,5 and 6 were isolated from Nitraria tangtorum for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Taklamakan Desert, lying in the center Tarim Basin of sourthern Xinjiang, is the largest sand sea in China and well known in the world as its inclemency. For understanding the formation and evolution of the Taklamakan Desert, it is very important to identify the provenance of aeolian sediments in the extensive dune fields, but the opinions from earlier studies are quite different. In this study, we examined the major- and trace-element compositions, mineral compositions and grain-size distributions of some Quaternary aeolian and nonaeolian sediments collected from the Taklamakan Desert, together with the variation of chemical and mineralogical compositions of different grain-size fraction. At the same time, we also studied the chemistries of some natural water samples (river water and groundwater) with the items of TDS, pH, Alkalinity, conductivity and major cation and anion compositions. Our results of analysis show some significant opinions as follow: Most of the frequency-distribution curves of grain size of dune sand samples are simgle peak, but that of the river and lacustrine sediment are most double peak or multi-peak. The grain-size distribution of dunefield sand changed gradually from north to south with the major wind direction in large scale, but there are many differences in regional scale. The major, REE, trace element compositions and mineral compositions are very different among the coarse, fine fraction and bulk samples due to the influence of grain-size. Most of the fine fractions are geochemically homogenous, but the coarse fractions and bulk samples are heterogenous. All the surface and ground waters are limnetic or sub-salty, their chemical compositions are mainly controlled by rock-weathering and crystallization- evaporation processes, and mainly come from the evaporate, while the contributions of the carbonate and silicate are little, excluding the influence on oasis water by carbonate. The mineral compositions of selected samples are stable, mainly composed of the strongly resistant mineral types. The mineral maturity of them are more immature at whole compared with other sandy sediments in the world, and they have experienced less degree of chemical weathering and recycling, being lying in the early stage of continental weathering. Among these sediments, the river sediments are relatively primitive. The sources of these sediments are maybe mainly terrigenous, silicic and subaluminous/ metalunious rocks, such as the granodiorite and its metamorphic rock. The geochemical compositions of dunefield sand are similar with those of the river sediments and dune sands near the river way; There are not only the resemblances but also the differences on geochemistry and granularity between north and south dunesands; The sediments from same section have different age but same trace-element compositions; The sediments from the south edge of Tarim Basin are all somewhat geochemically similar with the palaeo-river-sediment on the south edge of studying area. The REE data support the idea that the south dunesands are a little older than the north dunesands, and the tectonic settings of source area are mainly active continental margin based on the major-element compositions, so they indicate that the sediment of Taklamakan Desert maybe come mainly from the rock-weathering production of north part of the Kunlun Mountains. Compared with the sands of other dune field in north of China, the sands of the Taklamakan Desert are distinct by REE composition, but similar with the Luochuan loess, center China, and the two sandy dusts of Beijing, eastern China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The West Shandong Uplift and its adjacent basins, with same evolutional history before Mesozoic, are an important basin-orogenic systems in North China. After late Mesozoic, tectonic differentiation between basin and orogenic belt gradually displayed in the study area. The Boxing sag is a part of Jiyang Depression near to West Shandong Uplift, in which the whole Mesozoic and Cenozoic strata are preserved. Based on the analysis of sedimentary records in the Boxing sag, the Cenozoic structural and sedimentary evolutions in Boxing Sag and its response to Western Shandong uplift are discussed in this dissertation. The main conclusions in this research are presented as follows. Based on Seismic and well logging profile interpretation, fault growth index, thickness difference between bottom wall and top wall and fault activity rate from Eocene to Pliocene are studied. Boxing sag had three main faults, NE, NW and NEE trending faults. Research shows that the activity of the NW trending fault in the Boxing sag became weaken from E1-2S4 to N2m gradually. The evolution of NE and the NEE trending fault can be divided into three episodes, from E1-2k to E2s4, from E2s3 to E3s1, from N2m to E3d. The analysis of Paleogene samples of heavy mineral assemblages shows that metamorphic rocks represented by garnet, intermediate-acid igneous rocks represented by the assemblage of apatite, zircon and tourmaline became less from E1-2k to N2g, and sedimentary rocks represented by the assemblage of pyrite, barite and limonite also became less. Intermediate-basic igneous rocks represented by the assemblage of leucoxene, rutile and ilmenite and metamorphic rocks represented by epidote became more and more. Electronic microprobe analysis shows that glaucophane and barroisite are existed in Kongdian Formation and the 4th member of Shahejie Formation, and they demonstrate that Western Shandong and Eastern Shandong are all the source regions of the Boxing Sag, and they also indicate that oceanic crust existed before the collision between the Yangtze and North China continent. The fact that Eastern Shandong is the source region of Boxing Sag also indicates that Western Shandong was not high enough to prevent sediment from Eastern Shandong at E1-2k and E2s4. The results of the dating of five detrital zircons of Boxing Sag show Kongdian Formation and the 4th member of Shahejie Formation have the age peaks of 2800Ma and 700-800. It means that Eastern Shandong is the source region of Boxing Sag at early Paleogene and Western Shandong is not high enough to prevent the sediment from Eastern Shandong. The ages of 160-180 and 220-260 Ma, which exist in the Guantao Formation and Paleogene, are common in Eastern Shandong and rare in Western Shandong,and it implied that Western Shandong is a low uplift at 24Ma. The Paleogene strata have almost same age groups, while the Guantao Formation has significant variations of age groups, and this indicates that Boxing Sag and Western Shandong uplift had taken place tremendous changes. The results of apatite fission track in Boxing sag show that three times uplifts happened at the source region at 60 Ma, 45Ma and 15Ma respectively, and the Boxing sag experienced two subsidences at 60Ma, 45Ma and one uplift at 20Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Central Asian Orogen Belt (CAOB), which is different from the subductional orogen and the collisional orogen, is known as the most important site of crustal growth in the Phanerozoic, and it has been a ‘hot spot’ for studying the orogenic belts. The Chinese West Tianshan Orogen is occupying the west-southern part of the CAOB and is of great importances to understand the orogenic processes and the continental growth in the Central Asia. The West Tianshan Orogen had undergone complex tectonic evolutional processes in Paleozoic times and large volumes granitic rocks have recorded important information about these processes. Litter is known about Phanerozoic continental growth in the Western Tianshan area so far, compared with the other areas of the CAOB, such as eastern Junggar, western Junggar, Altai and Alakol. The aim of this dissertation is to set up the chronology frame of granitoids in western Tianshan, provide new evidence for the tectonic evolution and discuss the Paleozoic continental growth in this area, on the basis of the studies on the isotopic chronology, major element, trace element and Nd-Sr isotopic geochemistry of granitoids and the isotopic chronology and geochemistry of the ophiolites in this area, especially the Kule Lake ophiolites. 25 precise SHRIMP U-Pb zircon and LA-ICPMS U-Pb zircon ages have been obtained in this dissertation. The granitic rocks in western Tianshan had been formed during two periods: the granitic gneiss with an age of 896Ma, possibly representing the forming age of the Precambrian basement; the granitic rocks with ages varying from 479Ma to 247Ma, recording the Paleozoic orogenic process of western Tianshan. The granitoids in western Tianshan are composed of intermediate-basic rocks, intermediate rocks, intermediate-acid rocks and acid rocks, mainly intermediate-acid rocks and acid rocks. They are mostly granite, granodiorite, quartz syenite and monzodiorite. Different types of granitic rocks are exposed in different tectonic units. The granitoids on the northern margin of the Yili Plate mainly formed in late Paleozoic (413Ma ~ 281Ma), those with ages varying from 413Ma to 297Ma show continental arc affinities and the magnesian calc-alkalic metaluminous diorite of 281Ma display the geochemical characteristics similar to those of granites formed during the post-orogenic period. The granitiods on the southern margin of the Yili Plate include the adakite diorite of 470Ma which was formd by partial melting of thickened lower crust, the post-collisional alkali-feldspar granite of 430Ma, the volcanic arc granite of 348Ma and the Triassic post-collisional granite. The granitoids in the Central Tianshan Plate formed in 479Ma ~ 247Ma, mainly in 433Ma ~ 321Ma. The granitic rocks with ages of 479Ma ~ 321Ma are magnesian calc-alkalic to alkalic rocks with continental arc affinities. A few post-collisional granitoids of 276Ma ~ 247Ma may have inherited the geochemical characteristics of pre-existing arc magma. The granitic rocks in Southern Tianshan (northern margin of the Tarim plate) formed two stages, 420Ma ~ 411Ma and ca. 285Ma. The magnesian calcic to alkalic granites of 420Ma ~ 411Ma may formed during the extension process of the continental margin. The granite of 285Ma includes mostly ferroan calc-alkalic to alkali-calcic rocks with high SiO2 and high alkaline contents, and obviously negative anomaly of Eu, Ba, Sr, P, Ti, similar to the geochemical characteristics of the A-type granite which is formed during post-collisional extension. The Kule Lake ophiolite in southern Tianshan shows the affinity of N-MORB. A SHRIMP zircon U-Pb age of 425±8Ma has obtained for gabbros. Some zircons have given another group of 206Pb/238U age 918Ma, which may indicate the information of the pre-exist old basement rock. The small oceanic basin represented by Kule Lake ophiolite probably developed on the split northern margin of Tarim block. A model for Paleozoic tectonic evolution of the West Tianshan Orogen has been proposed here on the basis of the new results obtained in this dissertation and the previous published data. In Early Cambrian, the Terskey Ocean occurred along the North Nalati fault (NNF), and it separated the Yili plate from the Central Tianshan plate which was probably connected with the Tarim plate. The Terskey Ocean probably subducted towards south under the Central Tianshan plate and towards north under the Yili plate simultaneously. In the early stage of Late Ordovician, the Terskey Ocean had been closed, and the Yili and Central Tianshan plates collided. Meanwhile, extension happened within the joint Central Tianshan and Tarim plates gradually and the Paleo-South Tianshan Ocean had been formed. In Early Silurian, the Paleo-South Tianshan Ocean began to subduct beneath the composite Yili-Central Tianshan plate, which was intruded by volcanic arc granitoids. In Middle Silurian, the Paleo-South Tianshan Ocean, which had reached a certain width, was subducting strongly. And this subduction may have produced voluminous granitoids in the Central Tianshan plate. In the latest stage of Carboniferous, the Paleo-South Tianshan ocean closed, and the Yili-Central Tianshan plate and Tarim plate collided. In Late Cambrian, Paleo-Junggar Ocean occurred to north of the Yili plate; and started to subduct towards south under the Yili plate in Ordovician. This subduction may have produced a magma arc on the northern margin of the Yili plate. In Late Carboniferous, the Paleo-Junggar Ocean had been closed. The Yili-Central and Junggar plates amalgamated together. The West Tianhan Orogen may undergo a post-collisional collapse since Permian. And the magmatic activities may continue to early Triassic. The initial 87Sr/86Sr ration of the granitic rocks in the western Tianshan Mountains varies from 0.703226 to 0.716343, and Nd(t)from -6.50 to 2.03. The characteristics of Sr-Nd isotope indicate that the source of granitic material is not a sole source, which may be produced by mantle-crust magma mixing. In Paleozoic time, lateral growth of the continental crust along active continental margins was dominant, whereas the vertical growth of continental crust resulted from post- collisional mantle derived magmas was not obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers in west China are the sources of the major great rivers in Asia, and the solid water resources are crucial to China and South Asia. Black carbon (BC) results in very complex climate effects not only in the atmosphere, but accelerates the melting after its deposit on the surface of snow/ice. As the main distributed area of glaciers in China, the Tibetan Plateau (TP) and Xinjiang region are abutted by South Asia, Central Asia, and Russia, and east China, and the atmospheric environment would be influenced by the BC emitted from these regions. Whereas, the BC’s temporal and spatial distributions for concentration in the mid and top troposphere in west China, its transport, and its radiative forcing after deposited on the snow/ice surface are not well understood at the present. In the field, we collected samples from surface snow, snow pits, ice core, and aerosol in the glaciers, analyzed BC content mainly by the thermo-oxidized method in the laboratory, and discussed temporal and spatial distributions for BC concentrations in glaciers, the transport, and its impacts on the environment. Several conclusions were derived as follows: 1_Spatial distribution and the impact on albedos for BC concentrations in snow/ice: the BC concentrations in the surface snow for the investigated glaciers could be placed in areas, the Tianshan Mountains > the central TP > the Pamirs > the Qilian Mountians > the Himalayas. This distribution could be attributed to the elevation of the glaciers, the topography of the TP, and more regional emissions. Probably significant impacts on the albedos of the glacier surface could be caused by BC deposits, and the estimated reduced albedos on the glaciers are 9.8% (the Zhadang glacier), 8.7% (the Miao’ergou Riverhead No.3 glacier), and 6.8% (the Kuitun River Haxilegen No.48 glacier), and 6.2% (the Dongkemadi glacier), and 5.3% (the La’nong glacier), and 4.2% (the Muztagata glacier), etc. 2_The temporal variance of BC concentrations in ice of the East Rongbuk Glacier (ERG) and its climatic implications: major cations and anions (e.g., SO42- and Ca2+) concentrations in aerosols during summer monsoon seasons showed their close relationships with the sources of air masses, in which the variance of SO42- concentrations suggested the atmospheric environment over the ERG was significantly influenced by the aerosols from South Asia. BC record based on an ice core suggested its deposit was dominantly transported by monsoons in summers and by westerlies in other seasons, and the BC from South Asia in summers dominated the varying trend of its concentrations in the ice core and caused higher concentrations in summers than those in other seasons. In the past 50 yrs, BC concentrations showed fluctuations, whereas showed an increasing tread in the most recent decade, and exceeded 50 μg kg-1 in the summer of 2001; correspondingly, the radiative forcing caused by BC showed an increasing trend since 1990s, and exceeded 4.5 W m-2 in the summer of 2001. 3_Cabonaceous aerosols in the Nam Co region: organic carbon (OC) concentration accounted for ~95% and BC for ~5% in the total carbonaceous aerosol concentration, which was significantly influenced by summer precipitations. OC was dominantly derived from fossil fuel burning and BC from both fossil fuel and biomass burning. Trajectory analysis and aerosol optical depth suggested the atmospheric environment in the Nam Co region was most probably influenced by the emissions from South Asia. The potential source regions of air pollutants in the Nam Co regions in summers might be Bangladesh and east India, and in winters might be the Indo-gangetic basin. The scavenging ratio of atmospheric BC by rainfalls was less than those at other sites. West China is a less-developed region for industry, where BC concentrations in the atmosphere and snow/ice could be significantly influenced by the emissions from the abutted regions with rising industries (South Asia, Central Asia, and Russia). For example, snow/ice BC concentrations in the glaciers of the Parmirs, the Tianshan Mountains, and the Qilian Mountains in the northeast margin of the TP might be more influenced by the emissions from Centrial Asia (transported by the westerlies), those in the glaciers of the Himalayas might be more influenced by the emissions from South Asia (transported by the monsoons and the westerlies), and atmospheric carbonaceous aerosols might also be more influenced by the emissions from South Asia (transported by the monsoons and the westerlies). The BC concentrations in some glaciers might cause significant impacts on the albedos for the glaciers, and therefore enhanced the radiative forcings, for example, the ERG. The research on the relationships among atmospheric and snow/ice BC and its radiative forcing, variance of snow cover, mass balance of glaciers, and climate forcing would be needed in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geothermal resource is rich in Guanzhong Basin, but as to its cycle characteristic, there has been lack of systematic study so far. Blind exploitations lead to water-temperature reducing, the decrease of spring flow rate and so on. Based on groundwater system and hydrogeological and hydrological geochemical theory, this paper studied the recycling type of geothermal water and analyzed the resources of dissolved inorganic carbon (DIC) and sulfate. The origin of the internal geothermal water is ice and snow in Qinling Mountain and Liupan Mountain above 1400m. The precipitation and surface water entered the deep part of the basin along piedmont faults, heated and water-expansion increased. The karst groundwater comes from meteoric water of the bare carbonate rock area in the North Mountains. Geothermal-water DIC mainly came from the dissolution of carbonate rock in the deep part of Guanzhong Basin, sulfate of Xi’an depression and Lishan salient came from the dissolution of continental evaporate , and sulfate of Gushi depression and Xianli salient came from co-dissolution of continental and marine evaporate. The above results supply science basis for reasonable exploitation and sustainable utilization of the geothermal water in Guanzhong Basin.