957 resultados para Derivation principle
Resumo:
Introduction. This protocol aims at preparing total RNA for gene expression analysis by Northern blots, RT-PCR and real-time quantitative PCR; cDNA isolation by RTPCR; and cDNA library construction. The principle, key advantages, starting plant material, time required for obtaining total RNA and expected results are presented. Materials and methods. This part describes the required materials and the 27 steps necessary for preparing RNA from peel and pulp fruit tissue: preparation of plant tissue powder, preparation of the complete RNA extraction buffer and isolation of RNA from ground banana fruit tissue. Results. Extraction of total RNA by the method described makes it possible to achieve electrophoresis under denatured conditions and in vitro reverse transcription. An example for Northern blot analysis is illustrated.
Resumo:
Introduction. This protocol aims at ( a) evaluating the resistance to post-harvest diseases within different genotypes of bananas, and ( b) comparing different origins of bananas ( geographic origin, physiological stage, etc.) for their susceptibility to post-harvest diseases. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. Materials required and details of the twelve steps of the protocol ( fruit sampling and inoculum preparation, wound anthracnose resistance study, quiescent anthracnose resistance study and crown-rot resistance study) are described. Results. Typical symptoms of the different diseases are obtained after artificial inoculation.
Resumo:
Introduction. We present some protocols aiming at partially characterizing banana fruit quality through measurement of some key biochemical parameters. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the steps necessary for achieving four protocols making it possible to measure sugar, organic acids and free ACC contents, and in vitro ACC oxidase activity. Results. Standard results obtained by using the protocols described are presented in the figures.
Resumo:
Introduction. This protocol aims at measuring the storage life potential of banana fruit, and at determining the physiological age of fruit. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the five steps necessary for calculating the banana green life duration, which corresponds to the number of days between the fruit harvest and climacteric crisis. Results. The measurement of O-2 and CO2 concentrations allows one to detect the climacteric peak which marks the end of the banana green life.
Resumo:
Introduction. This protocol aims at detecting and quantifying quiescent infections of Colletotrichum musae on bananas. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. The materials required and details of the three steps of the protocol (fruit sampling, fruit ripening and anthracnose lesion quantification) are described. Possible troubleshooting is discussed. Results. The protocol results in the quantification of anthracnose lesions on the fruits, which makes it possible to predict postharvest losses due to anthracnose (peel rot), and also to propose a better management of postharvest fungicide applications.
Resumo:
Introduction. This method is used to forecast the harvest date of banana bunches from as early as the plant shooting stage. It facilitates the harvest of bunches with the same physiological age. The principle, key advantages, time required and expected results are presented. Materials and methods. Details of the four steps of the method ( installation of the temperature sensor, tagging bunches at the flowering stage, temperature sum calculation and estimation of bunch harvest date) are described. Possible problems are discussed. Results. The application of the method allows drawing a curve of the temperature sum accumulated by the bunches which have to be harvested at exactly 900 degree-days physiological age.
Resumo:
Introduction. This protocol aims at evaluating (a) the efficacy of new fungicides for the control of post-harvest diseases, (b) the efficacy of various application methods for the chemical control of post-harvest diseases, and (c) the quality of the fungicide solution during the same packing day where this solution is recycled. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. Materials required and details of the eighteen steps of the protocol (fruit sampling and inoculum preparation, wound anthracnose study, quiescent anthracnose study, and crown-rot study) are described. Results. Comparison between untreated control bananas and bananas treated with fungicide allows the calculation of the fungicide treatment efficacy.
Resumo:
The efficacy of photodynamic therapy (PDT) depends on a variety of parameters: concentration of the photosensitizer at the time of treatment, light wavelength, fluence, fluence rate, availability of oxygen within the illuminated volume, and light distribution in the tissue. Dosimetry in PDT requires the congregation of adequate amounts of light, drug, and tissue oxygen. The adequate dosimetry should be able to predict the extension of the tissue damage. Photosensitizer photobleaching rate depends on the availability of molecular oxygen in the tissue. Based on photosensitizers photobleaching models, high photobleaching has to be associated with high production of singlet oxygen and therefore with higher photodynamic action, resulting in a greater depth of necrosis. The purpose of this work is to show a possible correlation between depth of necrosis and the in vivo photosensitizer (in this case, Photogem (R)) photodegradation during PDT. Such correlation allows possibilities for the development of a real time evaluation of the photodynamic action during PDT application. Experiments were performed in a range of fluence (0-450 J/cm(2)) at a constant fluence rate of 250 mW/cm(2) and applying different illumination times (0-1800 s) to achieve the desired fluence. A quantity was defined (psi) as the product of fluorescence ratio (related to the photosensitizer degradation at the surface) and the observed depth of necrosis. The correlation between depth of necrosis and surface fluorescence signal is expressed in psi and could allow, in principle, a noninvasive monitoring of PDT effects during treatment. High degree of correlation is observed and a simple mathematical model to justify the results is presented.
Resumo:
Context. NGC 6522 has been the first metal-poor globular cluster identified in the bulge by Baade. Despite its importance, very few high-resolution abundance analyses of stars in this cluster are available. The bulge metal-poor clusters may be important tracers of the early chemical enrichment of the Galaxy. Aims. The main purpose of this study is to determine metallicity and elemental ratios in individual stars of NGC 6522. Methods. High-resolution spectra of 8 giants of the bulge's globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the FLAMES+GIRAFFE spectrograph. Multiband V, I, J, K(s) photometry was used to derive effective temperatures as reference values. Spectroscopic parameters were derived from Fe I and Fe II lines, and adopted for the derivation of abundance ratios. Results. The present analysis provides a metallicity [Fe/H] = -1.0 +/- 0.2. The alpha-elements oxygen, magnesium and silicon show [O/Fe] = +0.4 +/- 0.3, [Mg/Fe] = [Si/Fe] = +0.25 +/- 0.15, whereas calcium and titanium show shallower ratios of [Ca/Fe] = [Ti/Fe] = +0.15 +/- 0.15. The neutron-capture r-process element europium appears to be overabundant by [Eu/Fe] = +0.4 +/- 0.4. The neutron-capture s-elements lanthanum and barium are enhanced by [La/Fe] = +0.35 +/- 0.2 and [Ba/Fe] = +0.5 +/- 0.5. The large internal errors, indicating the large star-to-star variation in the barium and europium abundances, are also discussed. Conclusions. The moderate metallicity combined to a blue horizontal branch (BHB), are characteristics similar to those of HP 1 and NGC 6558, pointing to a population of very old globular clusters in the Galactic bulge. Also, the abundance ratios in NGC 6522 resemble those in HP 1 and NGC 6558. The ultimate conclusion is that the bulge is old, and went through an early prompt chemical enrichment.
Resumo:
Context. The origin of the short-term variability in Be stars remains a matter of controversy. Pulsations and rotational modulation are the components of the favored hypothesis. Aims. We present our analysis of CoRoT data of the B8IIIe star HD 175869 observed during the first short run in the center direction (SRC1). Methods. We review both the instrumental effects visible in the CoRoT light curve and the analysis methods used by the CoRoT Be team. We applied these methods to the CoRoT light curve of the star HD 175869. A search for line-profile variations in the spectroscopic data was also performed. We also searched for a magnetic field, by applying the LSD technique to spectropolarimetric data. Results. The light curve exhibits low-amplitude variations of the order of 300 mu mag with a double wave shape. A frequency within the range determined for the rotational frequency and 6 of its harmonics are detected. The main frequency and its first harmonic exhibit amplitude variations of a few days. Other significant frequencies of low-amplitude from 25 to a few mu mag are also found. The analysis of line profiles from ground-based spectroscopic data does not detect any variation. In addition, no Zeeman signature was found. Conclusions. Inhomogeneities caused by stellar activity in or just above the photosphere are proposed to produce the photometric variability detected by CoRoT in the Be star HD 175869. The hypothesis that non-radial pulsations are the origin of these variations cannot be excluded.
Resumo:
The relativistic heavy ion program developed at RHIC and now at LHC motivated a deeper study of the properties of the quark-gluon plasma (QGP) and, in particular, the study of perturbations in this kind of plasma. We are interested on the time evolution of perturbations in the baryon and energy densities. If a localized pulse in baryon density could propagate throughout the QGP for long distances preserving its shape and without loosing localization, this could have interesting consequences for relativistic heavy ion physics and for astrophysics. A mathematical way to prove that this can happen is to derive (under certain conditions) from the hydrodynamical equations of the QGP a Korteveg-de Vries (KdV) equation. The solution of this equation describes the propagation of a KdV soliton. The derivation of the KdV equation depends crucially on the equation of state (EOS) of the QGP. The use of the simple MIT bag model EOS does not lead to KdV solitons. Recently we have developed an EOS for the QGP which includes both perturbative and nonperturbative corrections to the MIT one and is still simple enough to allow for analytical manipulations. With this EOS we were able to derive a KdV equation for the cold QGP.
Resumo:
A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation,first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.
Resumo:
We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.
Resumo:
We evaluate the coincidence spectra in the nonmesonic weak decay (NMWD) Lambda N -> nN of Lambda hypernuclei (4)(Lambda)He, (5)(Lambda)He, (12)(Lambda)C, (16)(Lambda)O, and (28)(Lambda)Si, as a function of the sum of kinetic energies E(nN)=E(n)+E(N) for N=n,p. The strangeness-changing transition potential is described by the one-meson-exchange model, with commonly used parametrization. Two versions of the independent-particle shell model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are as follows: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account and (b) IPSM-b, where the highly excited hole states are considered to be quasistationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. All np and nn spectra exhibit a series of peaks in the energy interval 110 MeV < E(nN)< 170 MeV, one for each occupied shell-model state. Within the IPSM-a, and because of the recoil effect, each peak covers an energy interval proportional to A(-1) , going from congruent to 4 MeV for (28)(Lambda)Si to congruent to 40 MeV for (4)(Lambda)He. Such a description could be pretty fair for the light (4)(Lambda)He and (5)(Lambda)He hypernuclei. For the remaining, heavier, hypernuclei it is very important, however, to consider as well the spreading in strength of the deep-hole states and bring into play the IPSM-b approach. Notwithstanding the nuclear model that is employed the results depend only very weakly on the details of the dynamics involved in the decay process proper. We propose that the IPSM is the appropriate lowest-order approximation for the theoretical calculations of the of kinetic energy sum spectra in the NMWD. It is in comparison to this picture that one should appraise the effects of the final-state interactions and of the two-nucleon-induced decay mode.