991 resultados para Dependent Differentiation
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
In the present work are described and discussed the results of an extensive experimental program that aims to study the long-term behaviour of cracked steel fibre reinforced self-compacting concrete, SFRSCC, applied in laminar structures. In a first stage, the influence of the initial crack opening level (wcr = 0.3 and 0.5 mm), applied stress level, fibre orientation/dispersion and distance from the casting point, on the flexural creep behaviour of SFRSCC was investigated. Moreover, in order to evaluate the effects of the creep phenomenon on the residual flexural strength, a series of monotonic tests were also executed. It was found that wcr = 0.5 mm series showed a higher creep coefficient comparing to the series with a lower initial crack opening. Furthermore, the creep performance of the SFRSCC was influenced by the orientation of the extracted prismatic specimens regarding the direction of the concrete flow within the cast panel.
Resumo:
Doctoral Thesis (PhD Programm on Molecular and Environmental Biology)
Resumo:
Poly(vinylidene fluoride) (PVDF) is a biocompatible material with excellent electroactive properties. Non-electroactive α-PVDF and electroactive β-PVDF were used to investigate the substrate polarization and polarity influence on the focal adhesion size and number as well as on human adipose stem cells (hASCs) differentiation. hASCs were cultured on different PVDF surfaces adsorbed with fibronectin and focal adhesion size and number, total adhesion area, cell size, cell aspect ratio and focal adhesion density were estimated using cells expressing EGFP-vinculin. Osteogenic differentiation was also determined using a quantitative alkaline phosphatase assay. The surface charge of the poled PVDF films (positive or negative) influenced the hydrophobicity of the samples, leading to variations in the conformation of adsorbed extracellular matrix (ECM) proteins, which ultimately modulated the stem cell adhesion on the films and induced their osteogenic differentiation.
Resumo:
Different metal-ion exchanged NaY zeolite, Na(M)Y, were used to prepare poly(vinylidene fluoride) based composites by solvent casting and melting crystallization. The effect of different metal ion-exchanged zeolites on polymer crystallization and electrical properties was reported. Cation-framework interactions and hydration energy of the cations determined that K+ is the most efficient exchanged ion in NaY zeolite, followed by Cs+ and Li+. The electroactive phase crystallization strongly depends on the ions present in the zeolite, leading to variations of the surface energy characteristics of the Na(M)Y zeolites and the polymer chain ability of penetration in the zeolite. Thus, Na(Li)Y and NaY induces the complete electroactive -phase crystallization of the crystalline phase of PVDF, while Na(K)Y only induces it partly and Na(Cs)Y is not able to promote the crystallization of the electroactive phase. Furthermore, different ion size/weigh and different interaction with the zeolite framework results in significant variations in the electrical response of the composite. In this way, iinterfacial polarization effects in the zeolite cavities and zeolite-polymer interface, leads to strong increases of the dielectric constant on the composites with lightest ions weakly bound to the zeolite framework. Polymer composite with Na(Li)Y show the highest dielectric response, followed by NaY and Na(K)Y. Zeolite Na(Cs)Y contribute to a decrease of the dielectric constant of the composite. The results show the relevance of the materials for sensor development.
Resumo:
This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.
Resumo:
Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.
Resumo:
The receiver-operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1-specificity) for different cut-off values used to classify an individual as healthy or diseased. In time-to-event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time-dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time-dependent disease outcomes, time-dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time-dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right-censored data, as well as covariate-dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome.
Resumo:
Published online first in 10 July 2013
Resumo:
Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-y (IFN-y). Mycobacterium avium-infected mice lacking IFN-y signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-y signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-y reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-y displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-y is responsible for the Warburg effect observed in organs infected with M. avium.
Resumo:
Density-dependent responses are an important component of the organism life-history, and the resource allocation theory is a central concept to the life-history theory. When resource allocation varies due to environmental changes, a plant may change its morphology or physiology to cope with the new conditions, a process known as phenotypic plasticity. Our study aimed to evaluate how plant density affects Eichhornia crassipes allocation patterns. A total of 214 individuals in high and low density were collected. The density effect was observed in all plant traits examined including biomass accumulation. All traits of E. crassipes demonstrated higher values in high density conditions, except for biomass of leaves. Density exhibited a high influence on vegetative traits of E. crassipes, but did not influence allocation pattern, since a trade-off among the vegetative traits was not found. The morphological plasticity and the absence of trade-offs were discussed as strategies to overcome neighbor plants in competition situations. In high density conditions, there were clear changes in the morphology of the plants which probably allows for their survival in a highly competitive environment.
Resumo:
A newly developed strain rate dependent anisotropic continuum model is proposed for impact and blast applications in masonry. The present model adopted the usual approach of considering different yield criteria in tension and compression. The analysis of unreinforced block work masonry walls subjected to impact is carried out to validate the capability of the model. Comparison of the numerical predictions and test data revealed good agreement. Next, a parametric study is conducted to evaluate the influence of the tensile strengths along the three orthogonal directions and of the wall thickness on the global behavior of masonry walls.
Resumo:
tThe main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOzthin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposi-tion: the flow of the reactive gases mixture (N2and O2, with a constant concentration ratio of 17:3); thesubstrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel).The obtained films exhibit significant differences. The variation of the deposition parameters inducesvariations of the composition, microstructure and morphology. These differences cause variation of theelectrical resistivity essentially correlated with the composition and structural changes. The gradualdecrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity.The dielectric characteristics of some of the high resistance TaxNyOzfilms were obtained in the sampleswith a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectricTaxNyOzfilms). Some of these films exhibited dielectric constant values higher than those reported forother tantalum based dielectric films.
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
OBJECTIVE: The objective of the present study, with focus on gender, was aimed at evaluating alcohol-dependent individual in terms of socio-demographic variables related to alcohol consumption and therapeutic interventions. METHODS: This is a retrospective cross-sectional study of 1,051 patients (833 men and 218 women), with diagnosis of alcohol dependence syndrome, according to ICD-10 criteria, who had sought treatment for the first time at a specialised health centre between 2000 and 2006. RESULTS: The results showed that women, compared to men, are more likely to be unemployed and without partner, in addition to having higher educational level, latter age of alcohol initiation, needing less outpatient alcohol detoxification program, consuming more fermented beverage, presenting less psychiatric comorbidities, and using less coadjutant medications during treatment. CONCLUSION: We can state that some peculiarities exist permeating both gender and alcohol consumption. A further focus on the characteristics of each population is needed to facilitate the adequate use of therapeutic interventions according to gender specificities.