978 resultados para Defense information, Classified


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workflow Management Systems (WfMSs) enable the development and maintenance of workflow specifications at design time and their execution and monitoring at runtime. The open source WfMS YAWL supports the YAWL language – a formally defined language based on Petri nets which offers comprehensive support for control-flow and resource patterns. In addition, the YAWL system provides extensive support for process flexibility, in particular for process configuration, exception handling, dynamic workflow and declarative workflow. Due to its formal foundation, sophisticated verification support can also be achieved. This paper presents the YAWL system and its main applications.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching to an international audience online can be significantly different as compared to a traditional classroom setting. In a traditional classroom setting, the students are usually removed from their own cultural context and required to operate in the lecturer’s context. International students coming to Malaysia to study are implicitly expected to, and often do, become familiar with the Malaysian culture and style of education. The use of educational technologies as a blended strategy in higher education programs offers challenges and opportunities for all students but this may be different for international students who come from varied backgrounds. With an increasingly competitive global demand for higher education, Malaysian institutions strive to be the hub of educational excellence and a preferred option for international students in coping with the challenges of studying abroad in a different culture. This research will evaluate how undergraduate students perceive their online learning experiences in a Malaysian university. The OLES (Online Learning Environment Survey) will be used to explore the international and domestic students’ perception on e-learning and the findings of the first six OLES scales varying from (Computer Usage, Teacher Support, Student Interaction & Collaboration, Personal Relevance, Authentic Learning, and Student Autonomy) will be reported in this research. An in-depth study will be conducted to compare and contrast the challenges of international students with domestic students. Major difficulties encountered and how these students actually cope with e-learning, as well as the strategies and tools used to overcome the challenges will be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching to an international audience online can be significantly different as compared to a traditional classroom setting. In a traditional classroom setting, the students are usually removed from their own cultural context and required to operate in the lecturer’s context. International students coming to Malaysia to study are implicitly expected to, and often do, become familiar with the Malaysian culture and style of education. The use of educational technologies as a blended strategy in higher education programs offers challenges and opportunities for all students but this may be different for international students who come from varied backgrounds. With an increasingly competitive global demand for higher education, Malaysian institutions strive to be the hub of educational excellence and a preferred option for international students in coping with the challenges of studying abroad in a different culture. This research will evaluate how undergraduate students perceive their online learning experiences in a Malaysian institute. The OLES (Online Learning Environment Survey) will be used to explore the international and domestic students’ perception on e-learning and the findings of the last six OLES scales varying from (Equity, Enjoyment, Asychronocity, Evaluation & Assessments, Online Learning Tools, and Interface Design) will be reported in this research. An in-depth study will be conducted to compare and contrast the challenges of international students with domestic students. Major difficulties encountered and how these students actually cope with e-learning, as well as the strategies and tools used to overcome the challenges will be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the following problem: given two or more business process models, create a process model that is the union of the process models given as input. In other words, the behavior of the produced process model should encompass that of the input models. The paper describes an algorithm that produces a single configurable process model from an arbitrary collection of process models. The algorithm works by extracting the common parts of the input process models, creating a single copy of them, and appending the differences as branches of configurable connectors. This way, the merged process model is kept as small as possible, while still capturing all the behavior of the input models. Moreover, analysts are able to trace back from which original model(s) does a given element in the merged model come from. The algorithm has been prototyped and tested against process models taken from several application domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to examine the use of bid information, including both price and non-price factors in predicting the bidder’s performance. Design/methodology/approach – The practice of the industry was first reviewed. Data on bid evaluation and performance records of the successful bids were then obtained from the Hong Kong Housing Department, the largest housing provider in Hong Kong. This was followed by the development of a radial basis function (RBF) neural network based performance prediction model. Findings – It is found that public clients are more conscientious and include non-price factors in their bid evaluation equations. With the input variables used the information is available at the time of the bid and the output variable is the project performance score recorded during work in progress achieved by the successful bidder. It was found that past project performance score is the most sensitive input variable in predicting future performance. Research limitations/implications – The paper shows the inadequacy of using price alone for bid award criterion. The need for a systemic performance evaluation is also highlighted, as this information is highly instrumental for subsequent bid evaluations. The caveat for this study is that the prediction model was developed based on data obtained from one single source. Originality/value – The value of the paper is in the use of an RBF neural network as the prediction tool because it can model non-linear function. This capability avoids tedious ‘‘trial and error’’ in deciding the number of hidden layers to be used in the network model. Keywords Hong Kong, Construction industry, Neural nets, Modelling, Bid offer spreads Paper type Research paper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explosive growth of the World-Wide-Web and the emergence of ecommerce are the major two factors that have led to the development of recommender systems (Resnick and Varian, 1997). The main task of recommender systems is to learn from users and recommend items (e.g. information, products or books) that match the users’ personal preferences. Recommender systems have been an active research area for more than a decade. Many different techniques and systems with distinct strengths have been developed to generate better quality recommendations. One of the main factors that affect recommenders’ recommendation quality is the amount of information resources that are available to the recommenders. The main feature of the recommender systems is their ability to make personalised recommendations for different individuals. However, for many ecommerce sites, it is difficult for them to obtain sufficient knowledge about their users. Hence, the recommendations they provided to their users are often poor and not personalised. This information insufficiency problem is commonly referred to as the cold-start problem. Most existing research on recommender systems focus on developing techniques to better utilise the available information resources to achieve better recommendation quality. However, while the amount of available data and information remains insufficient, these techniques can only provide limited improvements to the overall recommendation quality. In this thesis, a novel and intuitive approach towards improving recommendation quality and alleviating the cold-start problem is attempted. This approach is enriching the information resources. It can be easily observed that when there is sufficient information and knowledge base to support recommendation making, even the simplest recommender systems can outperform the sophisticated ones with limited information resources. Two possible strategies are suggested in this thesis to achieve the proposed information enrichment for recommenders: • The first strategy suggests that information resources can be enriched by considering other information or data facets. Specifically, a taxonomy-based recommender, Hybrid Taxonomy Recommender (HTR), is presented in this thesis. HTR exploits the relationship between users’ taxonomic preferences and item preferences from the combination of the widely available product taxonomic information and the existing user rating data, and it then utilises this taxonomic preference to item preference relation to generate high quality recommendations. • The second strategy suggests that information resources can be enriched simply by obtaining information resources from other parties. In this thesis, a distributed recommender framework, Ecommerce-oriented Distributed Recommender System (EDRS), is proposed. The proposed EDRS allows multiple recommenders from different parties (i.e. organisations or ecommerce sites) to share recommendations and information resources with each other in order to improve their recommendation quality. Based on the results obtained from the experiments conducted in this thesis, the proposed systems and techniques have achieved great improvement in both making quality recommendations and alleviating the cold-start problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An examination of Information Security (IS) and Information Security Management (ISM) research in Saudi Arabia has shown the need for more rigorous studies focusing on the implementation and adoption processes involved with IS culture and practices. Overall, there is a lack of academic and professional literature about ISM and more specifically IS culture in Saudi Arabia. Therefore, the overall aim of this paper is to identify issues and factors that assist the implementation and the adoption of IS culture and practices within the Saudi environment. The goal of this paper is to identify the important conditions for creating an information security culture in Saudi Arabian organizations. We plan to use this framework to investigate whether security culture has emerged into practices in Saudi Arabian organizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the complex dynamic and uncertain characteristics of organisational employees who perform authorised or unauthorised information security activities is deemed to be a very important and challenging task. This paper presents a conceptual framework for classifying and organising the characteristics of organisational subjects involved in these information security practices. Our framework expands the traditional Human Behaviour and the Social Environment perspectives used in social work by identifying how knowledge, skills and individual preferences work to influence individual and group practices with respect to information security management. The classification of concepts and characteristics in the framework arises from a review of recent literature and is underpinned by theoretical models that explain these concepts and characteristics. Further, based upon an exploratory study of three case organisations in Saudi Arabia involving extensive interviews with senior managers, department managers, IT managers, information security officers, and IT staff; this article describes observed information security practices and identifies several factors which appear to be particularly important in influencing information security behaviour. These factors include values associated with national and organisational culture and how they manifest in practice, and activities related to information security management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While Business Process Management (BPM) is an established discipline, the increased adoption of BPM technology in recent years has introduced new challenges. One challenge concerns dealing with process model complexity in order to improve the understanding of a process model by stakeholders and process analysts. Features for dealing with this complexity can be classified in two categories: 1) those that are solely concerned with the appearance of the model, and 2) those that in essence change the structure of the model. In this paper we focus on the former category and present a collection of patterns that generalize and conceptualize various existing features. The paper concludes with a detailed analysis of the degree of support of a number of state-of-the-art languages and language implementations for these patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Public key cryptography, and with it,the ability to compute digital signatures, have made it possible for electronic commerce to flourish. It is thus unsurprising that the proposed Australian NECS will also utilise digital signatures in its system so as to provide a fully automated process from the creation of electronic land title instrument to the digital signing, and electronic lodgment of these instruments. This necessitates an analysis of the fraud risks raised by the usage of digital signatures because a compromise of the integrity of digital signatures will lead to a compromise of the Torrens system itself. This article will show that digital signatures may in fact offer greater security against fraud than handwritten signatures; but to achieve this, digital signatures require an infrastructure whereby each component is properly implemented and managed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This qualitative study views international students as information-using learners, through an information literacy lens. Focusing on the experiences of 25 international students at two Australian universities, the study investigates how international students use online information resources to learn, and identifies associated information literacy learning needs. An expanded critical incident approach provided the methodological framework for the study. Building on critical incident technique, this approach integrated a variety of concepts and research strategies. The investigation centred on real-life critical incidents experienced by the international students whilst using online resources for assignment purposes. Data collection involved semi-structured interviews and an observed online resource-using task. Inductive data analysis and interpretation enabled the creation of a multifaceted word picture of international students using online resources and a set of critical findings about their information literacy learning needs. The study’s key findings reveal: • the complexity of the international students’ experience of using online information resources to learn, which involves an interplay of their interactions with online resources, their affective and reflective responses to using them, and the cultural and linguistic dimensions of their information use. • the array of strengths as well as challenges that the international students experience in their information use and learning. • an apparent information literacy imbalance between the international students’ more developed information skills and less developed critical and strategic approaches to using information • the need for enhanced information literacy education that responds to international students’ identified information literacy needs. Responding to the findings, the study proposes an inclusive informed learning approach to support reflective information use and inclusive information literacy learning in culturally diverse higher education environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates self–Googling through the monitoring of search engine activities of users and adds to the few quantitative studies on this topic already in existence. We explore this phenomenon by answering the following questions: To what extent is the self–Googling visible in the usage of search engines; is any significant difference measurable between queries related to self–Googling and generic search queries; to what extent do self–Googling search requests match the selected personalised Web pages? To address these questions we explore the theory of narcissism in order to help define self–Googling and present the results from a 14–month online experiment using Google search engine usage data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).