950 resultados para Decomposition of Ranked Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let G be a semi-simple algebraic group over a field k. Projective G-homogeneous varieties are projective varieties over which G acts transitively. The stabilizer or the isotropy subgroup at a point on such a variety is a parabolic subgroup which is always smooth when the characteristic of k is zero. However, when k has positive characteristic, we encounter projective varieties with transitive G-action where the isotropy subgroup need not be smooth. We call these varieties projective pseudo-homogeneous varieties. To every such variety, we can associate a corresponding projective homogeneous variety. In this thesis, we extensively study the Chow motives (with coefficients from a finite connected ring) of projective pseudo-homogeneous varieties for G inner type over k and compare them to the Chow motives of the corresponding projective homogeneous varieties. This is done by proving a generic criterion for the motive of a variety to be isomorphic to the motive of a projective homogeneous variety which works for any characteristic of k. As a corollary, we give some applications and examples of Chow motives that exhibit an interesting phenomenon. We also show that the motives of projective pseudo-homogeneous varieties satisfy properties such as Rost Nilpotence and Krull-Schmidt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils are the largest sinks of carbon in terrestrial ecosystems. Soil organic carbon is important for ecosystem balance as it supplies plants with nutrients, maintains soil structure, and helps control the exchange of CO2 with the atmosphere. The processes in which wood carbon is stabilized and destabilized in forest soils is still not understood completely. This study attempts to measure early wood decomposition by different fungal communities (inoculation with pure colonies of brown or white rot, or the original microbial community) under various interacting treatments: wood quality (wood from +CO2, +CO2+O3, or ambient atmosphere Aspen-FACE treatments from Rhinelander, WI), temperature (ambient or warmed), soil texture (loamy or sandy textured soil), and wood location (plot surface or buried 15cm below surface). Control plots with no wood chips added were also monitored throughout the study. By using isotopically-labelled wood chips from the Aspen-FACE experiment, we are able to track wood-derived carbon losses as soil CO2 efflux and as leached dissolved organic carbon (DOC). We analyzed soil water for chemical characteristics such as, total phenolics, SUVA254, humification, and molecular size. Wood chip samples were also analyzed for their proportion of lignin:carbohydrates using FTIR analysis at three time intervals throughout 12 months of decomposition. After two years of measurements, the average total soil CO2 efflux rates were significantly different depending on wood location, temperature, and wood quality. The wood-derived portion soil CO2 efflux also varied significantly by wood location, temperature, and wood quality. The average total DOC and the wood-derived portion of DOC differed between inoculation treatments, wood location, and temperature. Soil water chemical characteristics varied significantly by inoculation treatments, temperature, and wood quality. After 12 months of decomposition the proportion of lignin:carbohydrates varied significantly by inoculation treatment, with white rot having the only average proportional decrease in lignin:carbohydrates. Both soil CO2 efflux and DOC losses indicate that wood location is important. Carbon losses were greater from surface wood chips compared with buried wood chips, implying the importance of buried wood for total ecosystem carbon stabilization. Treatments associated with climate change also had an effect on the level of decomposition. DOC losses, soil water characteristics, and FTIR data demonstrate the importance of fungal community on the degree of decomposition and the resulting byproducts found throughout the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival models are being widely applied to the engineering field to model time-to-event data once censored data is here a common issue. Using parametric models or not, for the case of heterogeneous data, they may not always represent a good fit. The present study relays on critical pumps survival data where traditional parametric regression might be improved in order to obtain better approaches. Considering censored data and using an empiric method to split the data into two subgroups to give the possibility to fit separated models to our censored data, we’ve mixture two distinct distributions according a mixture-models approach. We have concluded that it is a good method to fit data that does not fit to a usual parametric distribution and achieve reliable parameters. A constant cumulative hazard rate policy was used as well to check optimum inspection times using the obtained model from the mixture-model, which could be a plus when comparing with the actual maintenance policies to check whether changes should be introduced or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clomazone (2-(2-chlorophenyl) methyl-4.4-dimethyl-3-isoxazolidinone) is a post emergence herbicide widely used in rice fields in Rio Grande do Sul (Brazil) with high activity against Gramineae at the recommended application rate of 700 g/ha. The presence of this chemical in the water may affect microorganisms responsible for the decomposition of organic matter. Thus, a disturbe in the trophic chain sustained by the decompositors could happen. In the present work the decomposition rate of organic matter (Typha latifolia) exposed to several concentrations of a clomazone formulation: 0 (control), 25.0, 62.0, 156.0, 390.0 and 976.0mg/L on the basis of the active ingredient was evaluated. Five litter bags containing about 3.0g of pieces of T. latifolia leaves wereplaced in aquariums with 15 of reconstituted water. In cach aquarium were added 500g of sediment from the same place of the plant collection, as a source of decompositors microorganisms. The results relative tothe control, showed that the decomposition rate in the highest and lowest dose was reduced in 50.05 and 1,28%, respectively, after 80 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate representation of the Earth Radiation Budget by General Circulation Models (GCMs) is a fundamental requirement to provide reliable historical and future climate simulations. In this study, we found reasonable agreement between the integrated energy fluxes at the top of the atmosphere simulated by 34 state-of-the-art climate models and the observations provided by the Cloud and Earth Radiant Energy System (CERES) mission on a global scale, but large regional biases have been detected throughout the globe. Furthermore, we highlighted that a good agreement between simulated and observed integrated Outgoing Longwave Radiation (OLR) fluxes may be obtained from the cancellation of opposite-in-sign systematic errors, localized in different spectral ranges. To avoid this and to understand the causes of these biases, we compared the observed Earth emission spectra, measured by the Infrared Atmospheric Sounding Interferometer (IASI) in the period 2008-2016, with the synthetic radiances computed on the basis of the atmospheric fields provided by the EC-Earth GCM. To this purpose, the fast σ-IASI radiative transfer model was used, after its validation and implementation in EC-Earth. From the comparison between observed and simulated spectral radiances, a positive temperature bias in the stratosphere and a negative temperature bias in the middle troposphere, as well as a dry bias of the water vapor concentration in the upper troposphere, have been identified in the EC-Earth climate model. The analysis has been performed in clear-sky conditions, but the feasibility of its extension in the presence of clouds, whose impact on the radiation represents the greatest source of uncertainty in climate models, has also been proven. Finally, the analysis of simulated and observed OLR trends indicated good agreement and provided detailed information on the spectral fingerprints of the evolution of the main climate variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both compressible and incompressible porous medium models are used in the literature to describe the mechanical aspects of living tissues. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. A coupled system of equations describes the cell density and the nutrient concentration and the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed. To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, and a sharp uniform L4-bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current environmental crisis is forcing the automotive industry to face tough challenges for the Internal Combustion Engines development in order to reduce the emissions of pollutants and Greenhouse gases. In this context, in the last decades, the main technological solutions adopted by the manufacturers have been the direct injection and the engine downsizing, which led to the rising of new concerns related to the fuel-cylinder walls physical interaction. The fuel spray possibly impacts the cylinder liner wall, which is wetted by the lubricant oil thus causing the derating of the lubricant properties, increasing the oil consumption, and contaminating the lubricant oil in the crankcase. Also, concerning hydrogen fuelled internal combustion engines, it is likely that the high near-wall temperature, which is typical of the hydrogen flame, results in the evaporation of a portion of the lubricant oil, increasing its consumption. With regards on the innovative combustion systems and their control strategies, optical accessible engines are fundamental tools for experimental investigations on such combustion systems. Though, due to the optical measurement line, optical engines suffer from a high level of blow-by, which must be accounted for. In light of the above, this thesis work aims to develop numerical methodologies with the aim to build useful tools for supporting the design of modern engines. In particular, a one-dimensional modelling of the lubricant oil-fuel dilution and oil evaporation has been performed and coupled with an optimization algorithm to achieve a lubricant oil surrogate. Then, a quasi-dimensional blow-by model has been developed and validated against experimental data. Such model, has been coupled with CFD 3D simulations and directly implemented in CFD 3D. Finally, CFD 3D simulations coupled with the VOF method have been performed in order to validate a methodology for studying the impact of a liquid droplet on a solid surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nell'ambito della loro trasformazione digitale, molte organizzazioni stanno adottando nuove tecnologie per supportare lo sviluppo, l'implementazione e la gestione delle proprie architetture basate su microservizi negli ambienti cloud e tra i fornitori di cloud. In questo scenario, le service ed event mesh stanno emergendo come livelli infrastrutturali dinamici e configurabili che facilitano interazioni complesse e la gestione di applicazioni basate su microservizi e servizi cloud. L’obiettivo di questo lavoro è quello di analizzare soluzioni mesh open-source (istio, Linkerd, Apache EventMesh) dal punto di vista delle prestazioni, quando usate per gestire la comunicazione tra applicazioni a workflow basate su microservizi all’interno dell’ambiente cloud. A questo scopo è stato realizzato un sistema per eseguire il dislocamento di ognuno dei componenti all’interno di un cluster singolo e in un ambiente multi-cluster. La raccolta delle metriche e la loro sintesi è stata realizzata con un sistema personalizzato, compatibile con il formato dei dati di Prometheus. I test ci hanno permesso di valutare le prestazioni di ogni componente insieme alla sua efficacia. In generale, mentre si è potuta accertare la maturità delle implementazioni di service mesh testate, la soluzione di event mesh da noi usata è apparsa come una tecnologia ancora non matura, a causa di numerosi problemi di funzionamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the tides of a celestial bodies can unveil important information about their interior as well as their orbital evolution. The most important tidal parameter is the Love number, which defines the deformation of the gravity field due to an external perturbing body. Tidal dissipation is very important because it drives the secular orbital evolution of the natural satellites, which is even more important in the case of the the Jupiter system, where three of the Galilean moons, Io, Europa and Ganymede, are locked in an orbital resonance where the ratio of their mean motions is 4:2:1. This is called Laplace resonance. Tidal dissipation is described by the dissipation ratio k2/Q, where Q is the quality factor and it describes the dampening of a system. The goal of this thesis is to analyze and compare the two main tidal dynamical models, Mignard's model and gravity field variation model, to understand the differences between each model with a main focus on the single-moon case with Io, which can help also understanding better the differences between the two models without over complicating the dynamical model. In this work we have verified and validated both models, we have compared them and pinpointed the main differences and features that characterize each model. Mignard's model treats the tides directly as a force, while the gravity field variation model describes the tides with a change of the spherical harmonic coefficients. Finally, we have also briefly analyzed the difference between the single-moon case and the two-moon case, and we have confirmed that the governing equations that describe the change of semi-major axis and eccentricity are not good anymore when more moons are present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decomposition of Feynman integrals into a basis of independent master integrals is an essential ingredient of high-precision theoretical predictions, that often represents a major bottleneck when processes with a high number of loops and legs are involved. In this thesis we present a new algorithm for the decomposition of Feynman integrals into master integrals with the formalism of intersection theory. Intersection theory is a novel approach that allows to decompose Feynman integrals into master integrals via projections, based on a scalar product between Feynman integrals called intersection number. We propose a new purely rational algorithm for the calculation of intersection numbers of differential $n-$forms that avoids the presence of algebraic extensions. We show how expansions around non-rational poles, which are a bottleneck of existing algorithms for intersection numbers, can be avoided by performing an expansion in series around a rational polynomial irreducible over $\mathbb{Q}$, that we refer to as $p(z)-$adic expansion. The algorithm we developed has been implemented and tested on several diagrams, both at one and two loops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La colonna vertebrale è uno dei principali siti per lo sviluppo delle metastasi ossee. Esse modificano le proprietà meccaniche della vertebra indebolendo la struttura e inducendo l’instabilità spinale. La medicina in silico e i modelli agli elementi finiti (FE) hanno trovato spazio nello studio del comportamento meccanico delle vertebre, permettendo una valutazione delle loro proprietà meccaniche anche in presenza di metastasi. In questo studio ho validato i campi di spostamento predetti da modelli microFE di vertebre umane, con e senza metastasi, rispetto agli spostamenti misurati mediante Digital Volume Correlation (DVC). Sono stati utilizzati 4 provini da donatore umano, ognuno composto da una vertebra sana e da una vertebra con metastasi litica. Per ogni vertebra è stato sviluppato un modello microFE omogeneo, lineare e isotropo basato su sequenze di immagini ad alta risoluzione ottenute con microCT (voxel size = 39 μm). Sono state imposte come condizioni al contorno gli spostamenti ottenuti con la DVC nelle fette prossimali e distali di ogni vertebra. I modelli microFE hanno mostrato buone capacità predittive degli spostamenti interni sia per le vertebre di controllo che per quelle metastatiche. Per range di spostamento superiori a 100 μm, il valore di R2 è risultato compreso tra 0.70 e 0.99 e il valore di RMSE% tra 1.01% e 21.88%. Dalle analisi dei campi di deformazione predetti dai modelli microFE sono state evidenziate regioni a maggior deformazione nelle vertebre metastatiche, in particolare in prossimità delle lesioni. Questi risultati sono in accordo con le misure sperimentali effettuate con la DVC. Si può assumere quindi che il modello microFE lineare omogeneo isotropo in campo elastico produca risultati attendibili sia per le vertebre sane sia per le vertebre metastatiche. La procedura di validazione implementata potrebbe essere utilizzata per approfondire lo studio delle proprietà meccaniche delle lesioni blastiche.