862 resultados para Data processing
Resumo:
Concept exploration is a knowledge acquisition tool for interactively exploring the hierarchical structure of finitely generated lattices. Applications comprise the support of knowledge engineers by constructing a type lattice for conceptual graphs, and the exploration of large formal contexts in formal concept analysis.
Resumo:
Formal Concept Analysis allows to derive conceptual hierarchies from data tables. Formal Concept Analysis is applied in various domains, e.g., data analysis, information retrieval, and knowledge discovery in databases. In order to deal with increasing sizes of the data tables (and to allow more complex data structures than just binary attributes), conceputal scales habe been developed. They are considered as metadata which structure the data conceptually. But in large applications, the number of conceptual scales increases as well. Techniques are needed which support the navigation of the user also on this meta-level of conceptual scales. In this paper, we attack this problem by extending the set of scales by hierarchically ordered higher level scales and by introducing a visualization technique called nested scaling. We extend the two-level architecture of Formal Concept Analysis (the data table plus one level of conceptual scales) to many-level architecture with a cascading system of conceptual scales. The approach also allows to use representation techniques of Formal Concept Analysis for the visualization of thesauri and ontologies.
Resumo:
Knowledge discovery support environments include beside classical data analysis tools also data mining tools. For supporting both kinds of tools, a unified knowledge representation is needed. We show that concept lattices which are used as knowledge representation in Conceptual Information Systems can also be used for structuring the results of mining association rules. Vice versa, we use ideas of association rules for reducing the complexity of the visualization of Conceptual Information Systems.
Resumo:
TOSCANA is a graphical tool that supports the human-centered interactive processes of conceptual knowledge processing. The generality of the approach makes TOSCANA a universal tool applicable to a variety of domains. Only the so-called conceptual scales have to be designed for new applications. The presentation shows how the use of abstract scales allows the reuse of formerly defined conceptual scales. Furthermore it describes how thesauri and conceptual taxonomies can be integrated in the generation of conceptual scales.
Resumo:
Conceptual Information Systems unfold the conceptual structure of data stored in relational databases. In the design phase of the system, conceptual hierarchies have to be created which describe different aspects of the data. In this paper, we describe two principal ways of designing such conceptual hierarchies, data driven design and theory driven design and discuss advantages and drawbacks. The central part of the paper shows how Attribute Exploration, a knowledge acquisition tool developped by B. Ganter can be applied for narrowing the gap between both approaches.
Resumo:
Conceptual Information Systems provide a multi-dimensional conceptually structured view on data stored in relational databases. On restricting the expressiveness of the retrieval language, they allow the visualization of sets of realted queries in conceptual hierarchies, hence supporting the search of something one does not have a precise description, but only a vague idea of. Information Retrieval is considered as the process of finding specific objects (documents etc.) out of a large set of objects which fit to some description. In some data analysis and knowledge discovery applications, the dual task is of interest: The analyst needs to determine, for a subset of objects, a description for this subset. In this paper we discuss how Conceptual Information Systems can be extended to support also the second task.
Resumo:
Conceptual Graphs and Formal Concept Analysis have in common basic concerns: the focus on conceptual structures, the use of diagrams for supporting communication, the orientation by Peirce's Pragmatism, and the aim of representing and processing knowledge. These concerns open rich possibilities of interplay and integration. We discuss the philosophical foundations of both disciplines, and analyze their specific qualities. Based on this analysis, we discuss some possible approaches of interplay and integration.
Resumo:
This paper presents a lattice-based visual metaphor for knowledge discovery in electronic mail. It allows a user to navigate email using a visual lattice metaphor rather than a tree structure. By using such a conceptual multi-hierarchy, the content and shape of the lattice can be varied to accommodate any number of queries against the email collection. The system provides more flexibility in retrieving stored emails and can be generalised to any electronic documents. The paper presents the underlying mathematical structures, and a number of examples of the lattice and multi-hierarchy working with a prototypical email collection.
Resumo:
The aim of this paper is to indicate how TOSCANA may be extended to allow graphical representations not only of concept lattices but also of concept graphs in the sense of Contextual Logic. The contextual-logic extension of TOSCANA requires the logical scaling of conceptual and relatioal scales for which we propose the Peircean Algebraic Logic as reconstructed by R. W. Burch. As graphical representations we recommend, besides labelled line diagrams of concept lattices and Sowa's diagrams of conceptual graphs, particular information maps for utilizing background knowledge as much as possible. Our considerations are illustrated by a small information system about the domestic flights in Austria.
8th International Conference on Conceptual Structures: logical, linguistic, and computational issues
Resumo:
The problem of the relevance and the usefulness of extracted association rules is of primary importance because, in the majority of cases, real-life databases lead to several thousands association rules with high confidence and among which are many redundancies. Using the closure of the Galois connection, we define two new bases for association rules which union is a generating set for all valid association rules with support and confidence. These bases are characterized using frequent closed itemsets and their generators; they consist of the non-redundant exact and approximate association rules having minimal antecedents and maximal consequences, i.e. the most relevant association rules. Algorithms for extracting these bases are presented and results of experiments carried out on real-life databases show that the proposed bases are useful, and that their generation is not time consuming.
Resumo:
CEM is an email management system which stores its email in a concept lattice rather than in the usual tree structure. By using such a conceptual multi-hierarchy, the system provides more flexibility in retrieving stored emails. The paper presents the underlying mathematical structures, discusses requirements for their maintenance and presents their implementation.