982 resultados para Damage tolerance, composites, VCCT, CZM
Resumo:
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.
Resumo:
PURPOSE: To investigate the influence of demethylation with 5-aza-cytidine (AZA) on radiation sensitivity and to define the intrinsic radiation sensitivity of methylation deficient colorectal carcinoma cells. METHODS AND MATERIALS: Radiation sensitizing effects of AZA were investigated in four colorectal carcinoma cell lines (HCT116, SW480, L174 T, Co115), defining influence of AZA on proliferation, clonogenic survival, and cell cycling with or without ionizing radiation. The methylation status for cancer or DNA damage response-related genes silenced by promoter methylation was determined. The effect of deletion of the potential target genes (DNMT1, DNMT3b, and double mutants) on radiation sensitivity was analyzed. RESULTS: AZA showed radiation sensitizing properties at >or=1 micromol/l, a concentration that does not interfere with the cell cycle by itself, in all four tested cell lines with a sensitivity-enhancing ratio (SER) of 1.6 to 2.1 (confidence interval [CI] 0.9-3.3). AZA successfully demethylated promoters of p16 and hMLH1, genes associated with ionizing radiation response. Prolonged exposure to low-dose AZA resulted in sustained radiosensitivity if associated with persistent genomic hypomethylation after recovery from AZA. Compared with maternal HCT116 cells, DNMT3b-defcient deficient cells were more sensitive to radiation with a SER of 2.0 (CI 0.9-2.1; p = 0.03), and DNMT3b/DNMT1-/- double-deficient cells showed a SER of 1.6 (CI 0.5-2.7; p = 0.09). CONCLUSIONS: AZA-induced genomic hypomethylation results in enhanced radiation sensitivity in colorectal carcinoma. The mediators leading to sensitization remain unknown. Defining the specific factors associated with radiation sensitization after genomic demethylation may open the way to better targeting for the purpose of radiation sensitization.
Resumo:
Currently, acoustic isolation is one of the problems raised with building construction in Spain. The publication of the Basic Document for the protection against noise of the Technical Building Code has increased the demand of comfort for citizens. This has created the need to seek new composite materials that meet the new required acoustical building codes. In this paper we report the results of the newly developed composites that are able to improve the acoustic isolation of airborne noise. These composites were prepared from polypropylene (PP) reinforced with mechanical pulp fibers from softwood (Pinus radiata). Mechanical and acoustical properties of the composites from mechanical pulp (MP) and polypropylene (PP) have been investigated and compared to fiberglass (FG) composites. MP composites had lower tensile properties compared with FG composites, although these properties can be improved by incorporation of a coupling agent. The results of acoustical properties of MP composites were reported and compared with the conventional composites based on fiberglass and gypsum plasterboards. Finally, we suggest the application of MP composites as a light-weight building material to reduce acoustic transmitions
Resumo:
The main objective of this study was the management of corn stalk waste as reinforcement for polypropylene (PP) injection moulded composites as an alternative to wood flour and fibers. In the first step, corn stalk waste was subjected to various treatments, and four different corn stalk derivatives (flour and fibers) able to be used as reinforcement of composite materials were prepared and characterized. These derivatives are corn stalk flour, thermo-mechanical, semi-chemical, and chemical fibers. They were characterized in terms of their yield, lignin content, Kappa number, fiber length/diameter ratio, fines, coarseness, viscosity, and the length at the break of a standard sheet of paper. Results showed that the corn stalk derivatives have different physico-chemical properties. In the second step, the prepared flour and fibers were explored as a reinforcing element for PP composites. Coupled and non-coupled PP composites were prepared and tested for tensile properties. For overall trend, with the addition of a coupling agent, tensile properties of composites significantly improved, as compared with non-coupled samples. In addition, a morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The composites prepared with semichemical fiber gave better results in comparison with the rest of the corn stalk derivatives due to its chemical characteristics
Resumo:
In order to understand relationships between executive and structural deficits in the frontal cortex of patients within normal aging or Alzheimer's disease, we studied frontal pathological changes in young and old controls compared to cases with sporadic (AD) or familial Alzheimer's disease (FAD). We performed a semi-automatic computer assisted analysis of the distribution of beta-amyloid (Abeta) deposits revealed by Abeta immunostaining as well as of neurofibrillary tangles (NFT) revealed by Gallyas silver staining in Brodman areas 10 (frontal polar), 12 (ventro-infero-median) and 24 (anterior cingular), using tissue samples from 5 FAD, 6 sporadic AD and 10 control brains. We also performed densitometric measurements of glial fibrillary acidic protein, principal compound of intermediate filaments of astrocytes, and of phosphorylated neurofilament H and M epitopes in areas 10 and 24. All regions studied seem almost completely spared in normal old controls, with only the oldest ones exhibiting a weak percentage of beta-amyloid deposit and hardly any NFT. On the contrary, all AD and FAD cases were severely damaged as shown by statistically significant increased percentages of beta-amyloid deposit, as well as by a high number of NFT. FAD cases (all from the same family) had statistically more beta-amyloid and GFAP than sporadic AD cases in both areas 10 and 24 and statistically more NFT only in area 24. The correlation between the percentage of beta-amyloid and the number of NFT was significant only for area 24. Altogether, these data suggest that the frontal cortex can be spared by AD type lesions in normal aging, but is severely damaged in sporadic and still more in familial Alzheimer's disease. The frontal regions appear to be differentially vulnerable, with area 12 having the less amyloid burden, area 24 the less NFT and area 10 having both more amyloid and more NFT. This pattern of damage in frontal regions may represent a strong neuroanatomical support for the deterioration of attention and cognitive capacities as well as for the presence of emotional and behavioral troubles in AD patients.
Resumo:
Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC
Resumo:
The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composite material. Two mixing extrusion processes were evaluated, and the use of a kinetic mixer, instead of an internal mixer, resulted in longer mean fiber lengths of the reinforcing fibers. On the other hand, the accessibility of surface hydroxyl groups of stone groundwood fibers was improved by treating the fibers with 5% of sodium hydroxide, resulting in a noticeable increase of the tensile strength of the composites, for a similar percentage of coupling agent. A new parameter called Fiber Tensile Strength Factor is defined and used as a baseline for the comparison of the properties of the different composite materials. Finally the competitiveness of stone groundwood / polypropylene / polypropylene-co-maleic anhydride system, which compared favorably to sized glass-fiber / polypropylene GF/PP and glass-fiber / polypropylene / polypropylene-co-maleic anhydride composite formulations, was quantified by means of the fiber tensile strength factor
Resumo:
BACKGROUND: Anti-CD154 (MR1) monoclonal antibody (mAb) and rapamycin (RAPA) treatment both improve survival of rat-to-mouse islet xenograft. The present study investigated the effect of combined RAPA/MR1 treatment on rat-to-mouse islet xenograft survival and analyzed the role of CD4(+)CD25(+)Foxp3(+) T regulatory cells (Treg) in the induction and maintenance of the ensuing tolerance. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 mice were treated with MR1/RAPA and received additional monoclonal anti-IL2 mAb or anti CD25 mAb either early (0-28 d) or late (100-128 d) post-transplantation. Treg were characterised in the blood, spleen, draining lymph nodes and within the graft of tolerant and rejecting mice by flow cytometry and immunohistochemistry. Fourteen days of RAPA/MR1 combination therapy allowed indefinite islet graft survival in >80% of the mice. Additional administration of anti-IL-2 mAb or depleting anti-CD25 mAb at the time of transplantation resulted in rejection (100% and 89% respectively), whereas administration at 100 days post transplantation lead to lower rejection rates (25% and 40% respectively). Tolerant mice showed an increase of Treg within the graft and in draining lymph nodes early post transplantation, whereas 100 days post transplantation no significant increase of Treg was observed. Rejecting mice showed a transient increase of Treg in the xenograft and secondary lymphoid organs, which disappeared within 7 days after rejection. CONCLUSIONS/SIGNIFICANCES: These results suggest a critical role for Treg in the induction phase of tolerance early after islet xenotransplantation. These encouraging data support the need of developing further Treg therapy for overcoming the species barrier in xenotransplantation.
Resumo:
The early detection of cardiac organ damage in clinical practice is primordial for cardiovascular risk profiling of patients with hypertension. In this respect the determination of microalbuminuria is very appealing because it increasingly appears to be the most cost-effective means to identify cardiovascular and renal complications. Considering the treatment of patients with target organ damage, blockers of the renin-angiotensin system have a key position as they are very effective in regressing left ventricular hypertrophy, lowering urinary albumin excretion and delaying the progression of nephropathy. In high-risk patients with atherosclerosis, the use of a blocker of the renin-angiotensin system is also appealing, and it appears increasingly judicious to combine such a blocker with a calcium antagonist whenever required to control blood pressure.
Resumo:
BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögren's syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.
Resumo:
Intensity modulated radiotherapy (IMRT) is a conformal radiotherapy that produces concave and irregular target volume dose distributions. IMRT has a potential to reduce the volume of healthy tissue irradiated to a high dose, but this often at the price of an increased volume of normal tissue irradiated to a low dose. Clinical benefits of IMRT are expected to be most pronounced at the body sites where sensitive normal tissues surround or are located next to a target with a complex 3D shape. The irradiation doses needed for tumor control are often markedly higher than the tolerance of the radiation sensitive structures such as the spinal cord, the optic nerves, the eyes, or the salivary glands in the treatment of head and neck cancer. Parotid gland salivary flow is markedly reduced following a cumulative dose of 30 50 Gy given with conventional fractionation and xerostomia may be prevented in most patients using a conformal parotid-sparing radiotherapy technique. However, in cohort studies where IMRT was compared with conventional and conformal radiotherapy techniques in the treatment of laryngeal or oropharyngeal carcinoma, the dosimetric advantage of IMRT translated into a reduction of late salivary toxicity with no apparent adverse impact on the tumor control. IMRT might reduce the radiation dose to the major salivary glands and the risk of permanent xerostomia without compromizing the likelihood for cure. Alternatively, IMRT might allow the target dose escalation at a given level of normal tissue damage. We describe here the clinical results on postirradiation salivary gland function in head and neck cancer patients treated with IMRT, and the technical aspects of IMRT applied. The results suggest that the major salivary gland function can be maintained with IMRT without a need to compromise the clinical target volume dose, or the locoregional control.
Resumo:
The research presented in this report provides the basis for the development of a new procedure to be used by the Iowa DOT and cities and counties in the state to deal with detours. Even though the project initially focused on investigating new tools to determine condition and compensation, the focus was shifted to traffic and the gas tax method to set the basis for the new procedure. It was concluded that the condition-based approach, even though accurate and consistent condition evaluations can be achieved, is not feasible or cost effective because of the current practices of data collection (two-year cycle) and also the logistics of the procedure (before and after determination). The gas tax method provides for a simple, easy to implement, and consistent approach to dealing with compensation for use of detours. It removes the subjectivity out of the current procedures and provides for a more realistic (traffic based) approach to the compensation determination.
Resumo:
Background: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to atoxic dose of this drug, and the relationship between caffeine and oxidative stress pathways.Methodology/Principal Findings: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeinecontainingplates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 aresensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. Conclusions/Significance: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we havedemonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.