951 resultados para DYNAMICAL PARAMETER
Resumo:
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the B-1(1) excited state and (1)A(2) state along the C-S-I coordinate.
Resumo:
A new continuous configuration time-dependent self-consistent field method has been developed to study polyatomic dynamical problems by using the discrete variable representation for the reaction system, and applied to a reaction system coupled to a bath. The method is very efficient because the equations involved are as simple as those in the traditional single configuration approach, and can account for the correlations between the reaction system and bath modes rather well. (C) American Institute of Physics.
Resumo:
Essery, RLH & P, Etchevers, (2004). Parameter sensitivity in simulations of snowmelt. Journal of Geophysical Research, 109, doi:10. 1029/2004JD005036.
Resumo:
Huelse, M., Wischmann, S., Manoonpong, P., Twickel, A.v., Pasemann, F.: Dynamical Systems in the Sensorimotor Loop: On the Interrelation Between Internal and External Mechanisms of Evolved Robot Behavior. In: M. Lungarella, F. Iida, J. Bongard, R. Pfeifer (Eds.) 50 Years of Artificial Intelligence, LNCS 4850, Springer, 186 - 195, 2007.
Resumo:
The problem of the acquisition of first language phonology is dealt with within the general information-processing perspective. In this sense, language acquisition is viewed as a process of biologically founded pattern formation due to information exchanges between an adult and a child. Moreover, the process is cognitive in that the child, as a goal-seeking and error correcting individual, undertakes an intricate task of compressing a huge variety of linguistic stimuli in order to build an effective information code. It is further assumed that the basic mechanism which leads to the establishment of fully articulate linguistic ability is that of simulation. The mechanism works through a compression of a set of initial variables (i.e. initial conditions) into a minimum length algorithm and a subsequent construction of an integrated system of language-specific attractors. It is only then that the language user is capable of participating in an information transaction in a fully developed manner.
Resumo:
We consider the motion of ballistic electrons within a superlattice miniband under the influence of an alternating electric field. We show that the interaction of electrons with the self-consistent electromagnetic field generated by the electron current may lead to the transition from regular to chaotic dynamics. We estimate the conditions for the experimental observation of this deterministic chaos and discuss the similarities of the superlattice system with the other condensed matter and quantum optical systems.
Resumo:
Object detection can be challenging when the object class exhibits large variations. One commonly-used strategy is to first partition the space of possible object variations and then train separate classifiers for each portion. However, with continuous spaces the partitions tend to be arbitrary since there are no natural boundaries (for example, consider the continuous range of human body poses). In this paper, a new formulation is proposed, where the detectors themselves are associated with continuous parameters, and reside in a parameterized function space. There are two advantages of this strategy. First, a-priori partitioning of the parameter space is not needed; the detectors themselves are in a parameterized space. Second, the underlying parameters for object variations can be learned from training data in an unsupervised manner. In profile face detection experiments, at a fixed false alarm number of 90, our method attains a detection rate of 75% vs. 70% for the method of Viola-Jones. In hand shape detection, at a false positive rate of 0.1%, our method achieves a detection rate of 99.5% vs. 98% for partition based methods. In pedestrian detection, our method reduces the miss detection rate by a factor of three at a false positive rate of 1%, compared with the method of Dalal-Triggs.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
A difficulty in lung image registration is accounting for changes in the size of the lungs due to inspiration. We propose two methods for computing a uniform scale parameter for use in lung image registration that account for size change. A scaled rigid-body transformation allows analysis of corresponding lung CT scans taken at different times and can serve as a good low-order transformation to initialize non-rigid registration approaches. Two different features are used to compute the scale parameter. The first method uses lung surfaces. The second uses lung volumes. Both approaches are computationally inexpensive and improve the alignment of lung images over rigid registration. The two methods produce different scale parameters and may highlight different functional information about the lungs.
Resumo:
We present a generalized nonlinear susceptibility retrieval method for metamaterials based on transfer matrices and valid in the nondepleted pump approximation. We construct a general formalism to describe the transfer matrix method for nonlinear media and apply it to the processes of three- and four-wave mixing. The accuracy of this approach is verified via finite element simulations. The method is then reversed to give a set of equations for retrieving the nonlinear susceptibility. Finally, we apply the proposed retrieval operation to a three-wave mixing transmission experiment performed on a varactor loaded split ring resonator metamaterial sample and find quantitative agreement with an analytical effective medium theory model. © 2010 The American Physical Society.
Resumo:
We continue the discussion of the decision points in the FUELCON metaarchitecture. Having discussed the relation of the original expert system to its sequel projects in terms of an AND/OR tree, we consider one further domain for a neural component: parameter prediction downstream of the core reload candidate pattern generator, thus, a replacement for the NOXER simulator currently in use in the project.
Resumo:
The design and development of a comprehensive computational model of a copper stockpile leach process is summarized. The computational fluid dynamic software framework PHYSICA+ and various phenomena were used to model transport phenomena, mineral reaction kinetics, bacterial effects, and heat, energy and acid balances for the overall leach process. In this paper, the performance of the model is investigated, in particular its sensitvity to particle size and ore permeability. A combination of literature and laboratory sources was used to parameterize the model. The simulation results from the leach model are compared with closely controlled column pilot scale tests. The main performance characteristics (e.g. copper recovery rate) predicted by the model compare reasonably well with the experimental data and clearly reflect the qualitiative behavior of the process in many respects. The model is used to provide a measure of the sensitivity of ore permeability on leach behavior, and simulation results are examined for several different particle size distributions.