973 resultados para DNS Reparatur Doppelstrangbruch Toxikologie Histon Chromatin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a clear link between ataxia-telangiectasia mutated (ATM)-dependent phosphorylation of p53 and cell cycle checkpoint control, the intracellular biology and subcellular localization of p53 phosphoforms during the initial sensing of DNA damage is poorly understood. Using GO-G, confluent primary human diploid fibroblast cultures, we show that endogenous p53, phosphorylated at Ser(15) (p53(Ser15)), accumulates as discrete, dose-dependent and chromatin-bound foci within 30 minutes following induction of DNA breaks or DNA base damage. This biologicafly distinct subpool of p53(Ser15) is ATM dependent and resistant to 26S-proteasomal degradation. p53(Ser15) colocalizes and coimmunoprecipitates with gamma-H2AX with kinetics similar to that of biochemical DNA double-strand break (DNA-dsb) rejoining. Subnuclear micro-beam irradiation studies confirm p53 S,,15 is recruited to sites of DNA damage containing gamma-H2AX, ATM(Ser1981), and DNA-PKcs(Thr2609) in vivo. Furthermore, studies using isogenic human and murine cells, which express Ser(15) or Ser(18) phosphomutant proteins, respectively, show defective nuclear foci formation, decreased induction of p21(WAF) decreased gamma-H2AX association, and altered DNA-dsb kinetics following DNA damage. Our results suggest a unique biology for this p53 phosphoform in the initial steps of DNA damage signaling and implicates ATM-p53 chromatin-based interactions as mediators of cell cycle checkpoint control and DNA repair to prevent carcinogenesis. (Cancer Res 2005; 65(23): 10810-21).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the first detailed description of the nitrergic nervous system in a fluke. In this study, the authors analysed the distribution of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in neuronal and nonneuronal tissues of the adult fluke Fasciola hepatica and compared this with the distribution of the musculature using tetramethylrhodamine isothiocyanate-phalloidin. To assess the correlation between the number of muscle cells in different parts of the fluke and the NADPH-d-stained cells, the nuclei were stained with Hoechst 333 42, which is specific for chromatin. The spatial relation between the NADPH-d-positive nerves and the 5-hydroxytryptamine (serotonin; 5-HT)-immunoreactive (-IR) and GYIRFamide-IR nervous elements was also examined. The methods complement each other. NADPH-d-positive staining occurs in both in neuronal tissue and nonneuronal tissue. Large, NADPH-d-stained neurones were localised in the nervous system. The oral and ventral suckers are innervated with many large NADPH-d-stained neurones. Ln addition, the NADPH-d staining reaction follows closely the muscle fibres in both the suckers, in the body, and in the ducts of the reproductive organs. The presence of NADPH-d activity along muscle fibres in F. hepatica and in other flatworms supports a possible myoinhibitory role for nitric oxide. Neuronal nitric oxide synthase in flatworms may form a novel drug target, which would facilitate the development of a novel anthelminthic. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant expression of the MAD2 protein has been linked to chromosomal instability, malignant transformation and chemoresistance. Although reduced MAD2 expression is well recognised in human cancer cell lines, the mechanism(s) underlying its downregulation remain elusive. The objective of this study was to establish the impact of hypoxia on MAD2 expression and to investigate the potential role of aberrant promoter methylation as a possible mechanism of MAD2 downregulation. For this purpose, three ovarian cancer cell lines, displaying differing levels of MAD2, were treated with chromatin modifying drugs, pre and post-hypoxia exposure and a DHPLC analysis of DNA promoter methylation carried out. We show that hypoxia induces downregulation of MAD2 expression, independently of MAD2 promoter methylation. We also show no evidence of MAD2 promoter methylation in breast and prostate cancer cells or in breast cancer clinical material. While our findings provide no evidence for MAD2 promoter methylation, we show a concomitant upregulation of p21 with downregulation of MAD2 in hypoxia. Our in vitro results were also confirmed in an ovarian cancer tissue microarray (TMA), where a reciprocal staining of MAD2 and CAIX was found in 21/60 (35%) of tumours. In summary, MAD2 downregulation may be a crucial mechanism by which hypoxic cells become chemorefractory. This stems from our previous work where we demonstrated that MAD2 downregulation induces cellular senescence, a viable cellular fate, with resultant cellular resistance to paclitaxel. Moreover, MAD2 downregulation could play a central role in the induction of chemoresistance in hypoxia, a key tumour microenvironment associated with chemoresistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We genotyped 2,861 cases of primary biliary cirrhosis (PBC) from the UK PBC Consortium and 8,514 UK population controls across 196,524 variants within 186 known autoimmune risk loci. We identified 3 loci newly associated with PBC (at P <5 × 10(-8)), increasing the number of known susceptibility loci to 25. The most associated variant at 19p12 is a low-frequency nonsynonymous SNP in TYK2, further implicating JAK-STAT and cytokine signaling in disease pathogenesis. An additional five loci contained nonsynonymous variants in high linkage disequilibrium (LD; r(2) > 0.8) with the most associated variant at the locus. We found multiple independent common, low-frequency and rare variant association signals at five loci. Of the 26 independent non-human leukocyte antigen (HLA) signals tagged on the Immunochip, 15 have SNPs in B-lymphoblastoid open chromatin regions in high LD (r(2) > 0.8) with the most associated variant. This study shows how data from dense fine-mapping arrays coupled with functional genomic data can be used to identify candidate causal variants for functional follow-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-ß chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-ß, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-ß from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-ß exchange from heterochromatin, promoting DNA repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundRas-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown.MethodsWe investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided.ResultsMyc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (?(2) = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P <.001) and lung (?(2) = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P = .01) cancer cohorts.ConclusionsOur results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3ß (LC3-ßII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1a (IRE1a)-dependent manner. Knockdown of XBP1 or IRE1a by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3ß expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of "simple" cancer-associated chromosome deletions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element model of a single cell was created and used to investigate the effects of ageing on biophysical stimuli generated within a cell. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina, and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of Atomic Force Microscopy (AFM) indentation was performed and results showed a force/indentation simulation with the range of experimental results.

Ageing was simulated by both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age). Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain compared to young cells, but the difference, surprisingly, is very small and would not be measurable experimentally. Ageing is predicted to have more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models whose force/displacement behaviour is within experimentally observed ranges. the models suggest only small, though possibly physiologically-significant, differences in internal biophysical stimuli between normal and aged cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A repressor of the transition to flowering in Arabidopsis is the MADS box protein FLOWERING LOCUS C (FLC). FCA, an RNA-binding protein, and FY, a homolog of the yeast RNA 3' processing factor Pfs2p, downregulate FLC expression and therefore promote flowering. FCA/FY physically interact and alter polyadenylation/3' processing to negatively autoregulate FCA. Here, we show that FCA requires FLOWERING LOCUS D (FLD), a homolog of the human lysine-specific demethylase 1 (LSD1) for FLC downregulation. FCA also partially depends on DICER-LIKE 3, involved in chromatin silencing. fca mutations increased levels of unspliced sense FLC transcript, altered processing of antisense FLC transcripts, and increased H3K4 dimethylation in the central region of FLC. These data support a close association of FCA and FLD in mediating H3K4 demethylation and thus transcriptional silencing of FLC and reveal roles for antisense RNA processing and DCL3 function in this regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review considers the effects of ionizing radiation on the retina and examines the relationship between the natural course of radiation retinopathy and the radiobiology of the retinal vascular endothelial cell (RVEC). Radiation retinopathy presents clinically as a progressive pattern of degenerative and proliferative vascular changes, chiefly affecting the macula, and ranging from capillary occlusion, dilation, and microaneurysm formation, to telangiectasia, intraretinal microvascular abnormalities, and neovascularization. The total-radiation dose and fractionation schedule are the major determinants for the time of onset, rate of progression, and severity of retinopathy, although other factors such as concomitant chemotherapy and preexisting diabetes may exaggerate the vasculopathy by intensifying the oxygen-derived free-radical assault on the vascular cells. The differential radiosensitivity of RVECs is attributed to their nuclear chromatin conformation, their antioxidant status, and their environment. We propose pathogenetic mechanisms for radiation retinopathy and suggest that the peculiar latency and unique clinical pattern is related to the life cycle of the RVEC. A rationale is also proposed for the use of radiotherapy in the treatment of subneovascularization and age-related macular degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.