724 resultados para Covariant Plasmas
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.
Resumo:
Vertex operators in string theory me in two varieties: integrated and unintegrated. Understanding both types is important for the calculation of the string theory amplitudes. The relation between them is a descent procedure typically involving the b-ghost. In the pure spinor formalism vertex operators can be identified as cohomology classes of an infinite-dimensional Lie superalgebra formed by covariant derivatives. We show that in this language the construction of the integrated vertex from an unintegrated vertex is very straightforward, and amounts to the evaluation of the cocycle on the generalized Lax currents.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the study on the application of the electrolytic plasma for surface treatment of aluminum. A bibliographical study on the material of interest was preliminarily performed and later designed and built an electrolytic cell, including the excitation source. Unlike conventional electrolysis process, the plasma assisted carry on in the non-linear region of characteristic current/voltage curve. Therefore it requires for the on set of the process that the power supply operates on harder conditions than those on high current process. The plasma produced during the present investigation has temperatures in the range o 6,0.10 3 -7,0 .10 3 K, well above those found in conventional chemical process. It also shows a particular dynamic to promote changes on surface and to produce new materials. The plasma is generated by microdischarge in vapor or gas bubbles involved in physic-chemical processes in electrode regions of the electrolytic cell. The electrode material was the aluminum (7075). The Process Electrolytic Plasma Processing (EPP) is sensitive to various parameters such as operating voltage, current density, electrolyte, concentration of electrolyte, geometry of reactor, temperature of electrolytic solution and dynamic of the fluid in the cell. The experiments were carried on in order to find parameters for a stable abd steady operation. The choice for the electrolytic was silicate/alkali solution in various concentrations to operate in various voltage as well. Plasma was produced on negative (cathode) and positive (anode) electrode, in specific conditions. A stable operation on the cathode process was obtained with low concentration of the electrolytic in aqueous solution, current density around 250V effective voltage. For the evolution of plasma in anodic process it was required higher concentrations and higher... (Complete abstract click electronic access below)
Resumo:
The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper analyses the cosmological consequences of amodified theory of gravity whose action integral is built from a linear combination of the Ricci scalar R and a quadratic term in the covariant derivative of R. The resulting Friedmann equations are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day t(0) values for the deceleration parameter, jerk and snap are given. The coupling constant beta of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter Omega(m0) is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either an eternal expansion or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Deriglazov and Galajinsky have recently proposed a new covariant action for the Green-Schwarz superstring which can be constructed in any spacetime dimension. In this Comment, I show that their action contains extra on-shell degrees of freedom as compared with the standard action and is therefore inequivalent. ©1999 The American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT