896 resultados para Controlled conditions
Resumo:
The present study aimed at providing conditions for the assessment of color discrimination in children using a modified version of the Cambridge Colour Test (CCT, Cambridge Research Systems Ltd., Rochester, UK). Since the task of indicating the gap of the Landolt C used in that test proved counterintuitive and/or difficult for young children to understand, we changed the target Stimulus to a patch of color approximately the size of the Landolt C gap (about 7 degrees Of Visual angle at 50 cm from the monitor). The modifications were performed for the CCT Trivector test which measures color discrimination for the protan, deutan and tritan confusion lines. Experiment I Sought to evaluate the correspondence between the CCT and the child-friendly adaptation with adult subjects (n = 29) with normal color vision. Results showed good agreement between the two test versions. Experiment 2 tested the child-friendly software with children 2 to 7 years old (n = 25) using operant training techniques for establishing and maintaining the subjects` performance. Color discrimination thresholds were progressively lower as age increased within the age range tested (2 to 30 years old), and the data-including those obtained for children-fell within the range of thresholds previously obtained for adults with the CCT. The protan and deutan thresholds were consistently lower than tritan thresholds, a pattern repeatedly observed in adults tested with the CCT. The results demonstrate that the test is fit for assessment of color discrimination in young children and may be a useful tool for the establishment of color vision thresholds during development.
Resumo:
An experimental platform that allows application of internal faults on the armature windings of a specially modified synchronous generator in a controlled environment is described. It allows recording and studying current and voltage waveforms of internal fault conditions that may occur in a synchronous generator. Thus, traditional and new protection functions can be tested by using real data, and the transient response of the machine due to internal faults can be analyzed more closely. The hardware-software platform is described in detail, as well as all its control functions. The results can contribute significantly in new protection developments, as well as for educational purposes.
Resumo:
The aim of this work was to evaluate the effect of cryopreservation protocols on subsequent development of in vitro produced bovine embryos under different culture conditions. Expanded in vitro produced blastocysts (n = 600) harvested on days 7-9 were submitted to controlled freezing [slow freezing group: 10% ethylene glycol (EG) for 10 min and 1.2 degrees C/min cryopreservation]; quick-freezing [rapid freezing group: 10% EG for 10 min, 20% EG + 20% glycerol (Gly) for 30 s]; or vitrification [vitrification group: 10% EG for 10 min, 25% EG + 25% Gly for 30 s] protocols. Control group embryos were not exposed to cryoprotectant or cryopreservation protocols and the hatching rate was evaluated on day 12 post-insemination. In order to evaluate development, frozen-thawed embryos were subjected to granulosa cell co-culture in TCM199 or SOFaa for 4 days. Data were analyzed by PROC MIXED model using SAS Systems for Windows (R). Values were significant at p < 0.05. The hatching rate of the control group was 46.09%. In embryos cultured in TCM199, slow freezing and vitrification group hatching rates were 44.65 +/- 5.94% and 9.43 +/- 6.77%, respectively. In embryos cultured in SOFaa, slow freezing and vitrification groups showed hatching rates of 11.65 +/- 3.37 and 8.67 +/- 4.47%, respectively. In contrast, the rapid freezing group embryos did not hatch, regardless of culture medium. The slow freezing group showed higher hatching rates than other cryopreservation groups. Under such conditions, controlled freezing (1.2 degrees C/min) can be an alternative to cryopreservation of in vitro produced bovine embryos.
Resumo:
Background: Many studies reported that brief interventions are effective in reducing excessive drinking. This study aimed to assess the efficacy of a protocol of brief intervention for college students (BASICS), delivered face-to-face, to reduce risky alcohol consumption and negative consequences. Methods: A systematic review with meta-analysis was performed by searching for randomized controlled trials (RCTs) in Medline, PsycInfo, Web of Science and Cochrane Library databases. A quality assessment of RCTs was made by using a validated scale. Combined mean effect sizes, using meta-analysis random-effects models, were calculated. Results: 18 studies were included in the review. The sample sizes ranged from 54 to 1275 (median = 212). All studies presented a good evaluation of methodological quality and four were found to have excellent quality. After approximately 12 months of follow-up, students receiving BASICS showed a significant reduction in alcohol consumption (difference between means = -1.50 drinks per week, 95% CI: -3.24 to -0.29) and alcohol-related problems (difference between means = -0.87, 95% CI: -1.58 to -0.20) compared to controls. Conclusions: Overall, BASICS lowered both alcohol consumption and negative consequences in college students. Gender and peer factors seem to play an important role as moderators of behavior change in college drinking. Characteristics of BASICS procedure have been evaluated as more favorable and acceptable by students in comparison with others interventions or control conditions. Considerations for future researches were discussed.
Resumo:
Background. Migraine is comorbid to depression and widespread chronic pain (WCP), but the influence of these conditions on the health-related quality of life (HRQoL) of individuals with episodic (EM) and chronic migraine (CM) is poorly understood. Objective.-To assess the prevalence of depressive symptoms and WCP in individuals with EM and CM, as well as to estimate the joint impact of these conditions on the HRQoL of these individuals. Methods.-All women aged 18 to 65 years with a first diagnosis of EM or CM from September of 2006 to September of 2008 seen in an outpatient headache service were invited to participate. They were asked to attend a separate appointment in the service, and to bring another woman of similar age that also agreed to participate. Depressive symptoms were assessed using the Beck Depression Inventory. Questions about WCP followed the protocol of the American College of Rheumatology. HRQoL was assessed using the Short-Form 36 (SF-36). Multivariate analysis modeled HRQoL as a function of headache status, depressive symptoms, and pain, using quantile regression. Results.-Sample consisted of 179 women, 53 in the EM group, 37 in the CM group and 89 in control group. Groups did not differ by demographics. Mean scores of SF-36 were 53.6 (standard deviation [SD] = 23.5) for EM, 44.2 (SD = 18.5) for CM and 61.8 (SD = 21.5) for controls. In multivariate analysis, SF-36 scores were predicted by a CM status (P =.02; -10.05 [95% CI -18.52; -1.58]) and by a Beck Depression Inventory score (P <.01; -1.27 [95% CI -1.55; -0.99]). The influence of WCP in the SF-36 scores approached significance (P =.08; -0.78 [95% CI -1.64; 0.88]). Age did not contribute to the model. Conclusion.-Women with migraine are at an increased chance of WCP, and the chance increases as a function of headache frequency. Both depressive symptoms and CM independently predict HRQoL status.
Resumo:
This study aimed to analyze the cuticle thickness and pattern of epicuticular wax deposition in 'Gala' and 'Galaxy' apple cultivars (Malus domestica Borkh,) from three Brazilian producing areas: Vacaria (RS), Fraiburgo (SC) and Sao Joaquim (SC) with altitudes of 971, 1,048 and 1,353m, respectively. Harvested fruit were kept under two storage conditions: regular atmosphere (RA) (0 degrees C and 90% RH) and controlled atmosphere (CA) (1.5% O-2, 2.5% CO2, 0 degrees C and 90% RH). Cuticle thickness measurements were made using LM and the deposition pattern of epicuticular wax observed with a SEM. Altitude among the apple producing areas was not a factor in deposition pattern of waxes between the cultivars but at higher altitudes, the cuticle was thicker in both the cultivars. In the freshly-harvested fruits, waxes deposition in the form of platelets and the mechanism of "tear and repair" were observed. Severity of microcracks in the cuticle was more evident on the fruits from CA.
Resumo:
This study aimed to analyze the cuticle thickness and pattern of epicuticular wax deposition in 'Gala' and 'Galaxy' apple cultivars (Malus domestica Borkh,) from three Brazilian producing areas: Vacaria (RS), Fraiburgo (SC) and São Joaquim (SC) with altitudes of 971, 1,048 and 1,353m, respectively. Harvested fruit were kept under two storage conditions: regular atmosphere (RA) (0 ºC and 90% RH) and controlled atmosphere (CA) (1.5% O2, 2.5% CO2, 0ºC and 90% RH). Cuticle thickness measurements were made using LM and the deposition pattern of epicuticular wax observed with a SEM. Altitude among the apple producing areas was not a factor in deposition pattern of waxes between the cultivars but at higher altitudes, the cuticle was thicker in both the cultivars. In the freshly-harvested fruits, waxes deposition in the form of platelets and the mechanism of tear and repair were observed. Severity of microcracks in the cuticle was more evident on the fruits from CA.
Resumo:
The idea was to obtain nanowires in a chemical laboratory under convenient and simple conditions by employing templates. Thus it was possible to produce nanochains by interlinking of gold colloids synthesized by the two-phase-method of M. Brust with by making use of vanadiumoxide nanotubes as template. The length of the resulting nanowires is varying between 1100 nm and 200 nm with a diameter of about 16 nm. Due to a flexible linker the obtained nanowires are not completely rigid. These unique structural features could make them interesting objects for structuring and assembling in the nanoscale range. Another way to produce gold nanowires was realized by a two-step surface metallization procedure, using type I collagen fibres as a template. Gold colloids were used to label the collagen fibres by direct electrostatic interaction, followed by growth steps to enhance the size of the adsorbed colloidal gold crystals, resulting in a complete metallization of the template surface. The length of the resulting gold nanowires reaches several micrometers, with a diameter ~ 100 to 120 nm. To gain a deeper insight into the process of biomineralization the cooperative effect of self-assembled monolayers as substrate and a soluble counterpart on the nucleation and crystal growth of calcium phosphate was studied by diffusion techniques with a pH switch as initiator. As soluble component Perlucin and Nacrein were used. Both are proteins originally extracted from marine organisms, the first one from the Abalone shell and the second one from oyster pearls. Both are supposed to facilitate the calcium carbonate formation in vivo. Studies with Perlucin revealed that this protein shows a clear cooperative effect at a very low concentration with a hydrophobic surface promoting the calcium phosphate precipitation resulting in a sponge like structure of hydroxyapatite. The Perlucin molecule is very flexible and is unfolded by adsorbing to the hydrophobic surface and uncovers its active side. Hydrophilic surfaces did not have a deeper impact. Studies with Nacrein as additive have shown that the protein stabilizes octacalcium phosphate at room temperature on carboxylic self-assembled monolayer and at 34 °C on all other employed surfaces by interaction with the mineral. On the hydroxyl-, alkyl-, and amin-terminated self-assembled monolayers at room temperature the octacalcium phosphate get transformed to hydroxyapatite. Main analytical techniques which are used in this work are transmission electron microscopy, high resolution scanning electron microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, Raman micro-spectroscopy and quartz crystal microbalance.
Resumo:
Diabetes mellitus is considered a risk factor for Group B Streptococcus (GBS) infections. Typically, this pathology is associated to high glucose levels in the bloodstream. Although clinical evidences support this notion, the physiological mechanisms underlying GBS adaptation to such conditions are not yet defined. In the attempt to address this issue, we performed comparative global gene expression analysis of GBS grown under glucose-stress conditions and observed that a number of metabolic and virulence genes was differentially regulated. Of importance, we also demonstrated that by knocking-out the csrRS locus the transcription profile of GBS grown in high-glucose conditions was profoundly affected, with more than a third of glucose-dependent genes, including the virulence factor bibA, found to be controlled by this two-component system. Furthermore, in vitro molecular analysis showed that CsrR specifically binds to the bibA promoter and the phosphorilation increases the affinity of the regulator to this promoter region. Moreover, we demonstrated that CsrR acts as a repressor of bibA expression by binding to its promoter in vivo. In conclusion, this work by elucidating both the response of GBS to pathological glucose conditions and the underlined molecular mechanisms will set the basis for a better understanding of GBS pathogenesis.
Resumo:
The diameters of traditional dish concentrators can reach several tens of meters, the construction of monolithic mirrors being difficult at these scales: cheap flat reflecting facets mounted on a common frame generally reproduce a paraboloidal surface. When a standard imaging mirror is coupled with a PV dense array, problems arise since the solar image focused is intrinsically circular. Moreover, the corresponding irradiance distribution is bell-shaped in contrast with the requirement of having all the cells under the same illumination. Mismatch losses occur when interconnected cells experience different conditions, in particular in series connections. In this PhD Thesis, we aim at solving these issues by a multidisciplinary approach, exploiting optical concepts and applications developed specifically for astronomical use, where the improvement of the image quality is a very important issue. The strategy we propose is to boost the spot uniformity acting uniquely on the primary reflector and avoiding the big mirrors segmentation into numerous smaller elements that need to be accurately mounted and aligned. In the proposed method, the shape of the mirrors is analytically described by the Zernike polynomials and its optimization is numerically obtained to give a non-imaging optics able to produce a quasi-square spot, spatially uniform and with prescribed concentration level. The freeform primary optics leads to a substantial gain in efficiency without secondary optics. Simple electrical schemes for the receiver are also required. The concept has been investigated theoretically modeling an example of CPV dense array application, including the development of non-optical aspects as the design of the detector and of the supporting mechanics. For the method proposed and the specific CPV system described, a patent application has been filed in Italy with the number TO2014A000016. The patent has been developed thanks to the collaboration between the University of Bologna and INAF (National Institute for Astrophysics).
Resumo:
Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.
Resumo:
Diese Arbeit befasst sich mit den optischen Resonanzen metallischer Nanopartikel im Abstand weniger Nanometer von einer metallischen Grenzfläche. Die elektromagnetische Wechselwirkung dieser „Kugel-vor-Fläche“ Geometrie ruft interessante optische Phänomene hervor. Sie erzeugt eine spezielle elektromagnetische Eigenmode, auch Spaltmode genannt, die im Wesentlichen auf den Nanospalt zwi-schen Kugel und Oberfläche lokalisiert ist. In der quasistatischen Näherung hängt die Resonanzposition nur vom Material, der Umgebung, dem Film-Kugel Abstand und dem Kugelradius selbst ab. Theoretische Berechnungen sagen für diese Region unter Resonanzbedingungen eine große Verstärkung des elektro-magnetischen Feldes voraus. rnUm die optischen Eigenschaften dieser Systeme zu untersuchen, wurde ein effizienter plasmonenver-mittelnder Dunkelfeldmodus für die konfokale Rastermikroskopie durch dünne Metallfilme entwickelt, der die Verstärkung durch Oberflächenplasmonen sowohl im Anregungs- als auch Emissionsprozess ausnutzt. Dadurch sind hochwertige Dunkelfeldaufnahmen durch die Metallfilme der Kugel-vor-Fläche Systeme garantiert, und die Spektroskopie einzelner Resonatoren wird erleichtert. Die optischen Untersuchungen werden durch eine Kombination von Rasterkraft- und Rasterelektronenmikroskopie vervollständigt, so dass die Form und Größe der untersuchten Resonatoren in allen drei Dimensionen bestimmt und mit den optischen Resonanzen korreliert werden können. Die Leistungsfähigkeit des neu entwickelten Modus wird für ein Referenzsystem aus Polystyrol-Kugeln auf einem Goldfilm demonstriert. Hierbei zeigen Partikel gleicher Größe auch die erwartete identische Resonanz.rnFür ein aus Gold bestehendes Kugel-vor-Fläche System, bei dem der Spalt durch eine selbstorganisierte Monolage von 2-Aminoethanthiol erzeugt wird, werden die Resonanzen von Goldpartikeln, die durch Reduktion mit Chlorgoldsäure erzeugt wurden, mit denen von idealen Goldkugeln verglichen. Diese ent-stehen aus den herkömmlichen Goldpartikeln durch zusätzliche Bestrahlung mit einem Pikosekunden Nd:Yag Laser. Bei den unbestrahlten Partikeln mit ihrer Unzahl an verschiedenen Formen zeigen nur ein Drittel der untersuchten Resonatoren ein Verhalten, das von der Theorie vorhergesagt wird, ohne das dies mit ihrer Form oder Größe korrelieren würde. Im Fall der bestrahlten Goldkugeln tritt eine spürbare Verbesserung ein, bei dem alle Resonatoren mit den theoretischen Rechnungen übereinstimmen. Eine Änderung der Oberflächenrauheit des Films zeigt hingegen keinen Einfluß auf die Resonanzen. Obwohl durch die Kombination von Goldkugeln und sehr glatten Metallfilmen eine sehr definierte Probengeometrie geschaffen wurde, sind die experimentell bestimmten Linienbreiten der Resonanzen immer noch wesentlich größer als die berechneten. Die Streuung der Daten, selbst für diese Proben, deutet auf weitere Faktoren hin, die die Spaltmoden beeinflußen, wie z.B. die genaue Form des Spalts. rnDie mit den Nanospalten verbundenen hohen Feldverstärkungen werden untersucht, indem ein mit Farbstoff beladenes Polyphenylen-Dendrimer in den Spalt eines aus Silber bestehenden Kugel-vor-Fläche Systems gebracht wird. Das Dendrimer in der Schale besteht lediglich aus Phenyl-Phenyl Bindungen und garantiert durch die damit einhergende Starrheit des Moleküls eine überragende Formstabiliät, ohne gleichzeitig optisch aktiv zu sein. Die 16 Dithiolan Endgruppen sorgen gleichzeitig für die notwendige Affinität zum Silber. Dadurch kann der im Inneren befindliche Farbstoff mit einer Präzision von wenigen Nanometern im Spalt zwischen den Metallstrukturen platziert werden. Der gewählte Perylen Farbstoff zeichnet sich wiederum durch hohe Photostabilität und Fluoreszenz-Quantenausbeute aus. Für alle untersuchten Partikel wird ein starkes Fluoreszenzsignal gefunden, das mindestens 1000-mal stärker ist, als das des mit Farbstoff überzogenen Metallfilms. Das Profil des Fluoreszenz-Anregungsspektrums variiert zwischen den Partikeln und zeigt im Vergleich zum freien Farbstoff eine zusätzliche Emission bei höheren Frequenzen, was in der Literatur als „hot luminescence“ bezeichnet wird. Bei der Untersuchung des Streuverhaltens der Resonatoren können wieder zwei unterschiedliche Arten von Resonatoren un-terschieden werden. Es gibt zunächst die Fälle, die bis auf die beschriebene Linienverbreiterung mit einer idealen Kugel-vor-Fläche Geometrie übereinstimmen und dann andere, die davon stark abweichen. Die Veränderungen der Fluoreszenz-Anregungsspektren für den gebundenen Farbstoffs weisen auf physikalische Mechanismen hin, die bei diesen kleinen Metall/Farbstoff Abständen eine Rolle spielen und die über eine einfache wellenlängenabhängige Verstärkung hinausgehen.
Resumo:
Dendritic cells (DC) are professional antigen presenting cells that represent an important link between innate and adaptive immunity. Danger signals such as toll-like receptor (TLR) agonists induce maturation of DC leading to a T-cell mediated adaptive immune response. In this study, we show that exogenous as well as endogenous inflammatory stimuli for TLR4 and TLR2 induce the expression of HIF-1alpha in human monocyte-derived DC under normoxic conditions. On the functional level, inhibition of HIF-1alpha using chetomin (CTM), YC-1 and digoxin lead to no consistent effect on MoDC maturation, or cytokine secretion despite having the common effect of blocking HIF-1alpha stabilization or activity through different mechanisms. Stabilization of HIF-1alpha protein by hypoxia or CoCl(2) did not result in maturation of human DC. In addition, we could show that TLR stimulation resulted in an increase of HIF-1alpha controlled VEGF secretion. These results show that stimulation of human MoDC with exogenous as well as endogenous TLR agonists induces the expression of HIF-1alpha in a time-dependent manner. Hypoxia alone does not induce maturation of DC, but is able to augment maturation after TLR ligation. Current evidence suggests that different target genes may be affected by HIF-1alpha under normoxic conditions with physiological roles that differ from those induced by hypoxia.
Resumo:
Objective: To compare the soft and hard tissue healing and remodeling around tissue-level implants with different neck configurations after at least 1 year of functional loading. Material and methods: Eighteen patients with multiple missing teeth in the posterior area received two implants inserted in the same sextant. One test (T) implant with a 1.8 mm turned neck and one control (C) implant with a 2.8 mm turned neck were randomly assigned. All implants were placed transmucosally to the same sink depth of approximately 1.8 mm. Peri-apical radiographs were obtained using the paralleling technique and digitized. Two investigators blinded to the implant type-evaluated soft and hard tissue conditions at baseline, 6 months and 1 year after loading. Results: The mean crestal bone levels and soft tissue parameters were not significantly different between T and C implants at all time points. However, T implants displayed significantly less crestal bone loss than C implants after 1 year. Moreover, a frequency analysis revealed a higher percentage (50%) of T implants with crestal bone levels 1–2 mm below the implant shoulder compared with C implants (5.6%) 1 year after loading. Conclusion: Implants with a reduced height turned neck of 1.8 mm may, indeed, lower the crestal bone resorption and hence, may maintain higher crestal bone levels than do implants with a 2.8 mm turned neck, when sunk to the same depth. Moreover, several factors other than the vertical positioning of the moderately rough SLA surface may influence crestal bone levels after 1 year of function.
Resumo:
Background: The use of endosseous dental implants has become common practice for the rehabilitation of edentulous patients, and a two-implant overdenture has been recommended as the standard of care. The use of small-diameter implants may extend treatment options and reduce the necessity for bone augmentation. However, the mechanical strength of titanium is limited, so titanium alloys with greater tensile and fatigue strength may be preferable. Purpose: This randomized, controlled, double-blind, multicenter study investigated in a split-mouth model whether small-diameter implants made from Titanium-13Zirconium alloy (TiZr, Roxolid™) perform at least as well as Titanium Grade IV implants. Methods and Materials: Patients with an edentulous mandible received one TiZr and one Ti Grade IV small-diameter bone level implant (3.3 mm, SLActive®) in the interforaminal region. The site distribution was randomized and double-blinded. Outcome measures included change in radiological peri-implant bone level from surgery to 12 months post-insertion (primary), implant survival, success, soft tissue conditions, and safety (secondary). Results: Of 91 treated patients, 87 were available for the 12-month follow-up. Peri-implant bone level change (-0.3 ± 0.5 mm vs -0.3 ± 0.6 mm), plaque, and sulcus bleeding indices were not significantly different between TiZr and Ti Grade IV implants. Implant survival rates were 98.9 percent and 97.8 percent, success rates were 96.6 percent and 94.4 percent, respectively. Nineteen minor and no serious adverse events were related to the study devices. Conclusion: This study confirms that TiZr small-diameter bone level implants provide at least the same outcomes after 12 months as Ti Grade IV bone level implants. The improved mechanical properties of TiZr implants may extend implant therapy to more challenging clinical situations.