922 resultados para Container loading
Resumo:
A considerable proportion of the dietary nutrients consumed by poultry are excreted in the manure. This becomes an important issue on free range farms, if manure and/or nutrients are not removed periodically from the range areas. The nutrients and trace elements in manure can accumulate in the soil and become toxic to vegetation, while also causing pollution of ground and surface water through leaching. Soil samples were collected from fourteen free range layer farms both on the range and control areas (with no exposure to poultry) to investigate comparative soil nutrient concentrations. Nutrient concentrations were also compared between fixed and rotational ranges and between farms having different bird densities. At each site, soil was collected from 10 sampling points, arranged diagonally in a grid across both the range and control areas. A sampling probe was used to collect soil from the top 10 cm depth. These were submitted for a standardised lab analysis (Apal Agricultural Laboratory, SA, Australia). Data was subjected to analysis of variance and means considered significant at P < 0.05.
Resumo:
The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular 'switch' regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system.
Resumo:
The application of Computational Fluid Dynamics based on the Reynolds-Averaged Navier-Stokes equations to the simulation of bluff body aerodynamics has been thoroughly investigated in the past. Although a satisfactory accuracy can be obtained for some urban physics problems their predictive capability is limited to the mean flow properties, while the ability to accurately predict turbulent fluctuations is recognized to be of fundamental importance when dealing with wind loading and pollution dispersion problems. The need to correctly take into account the flow dynamics when such problems are faced has led researchers to move towards scale-resolving turbulence models such as Large Eddy Simulations (LES). The development and assessment of LES as a tool for the analysis of these problems is nowadays an active research field and represents a demanding engineering challenge. This research work has two objectives. The first one is focused on wind loads assessment and aims to study the capabilities of LES in reproducing wind load effects in terms of internal forces on structural members. This differs from the majority of the existing research, where performance of LES is evaluated only in terms of surface pressures, and is done with a view of adopting LES as a complementary design tools alongside wind tunnel tests. The second objective is the study of LES capabilities in calculating pollutant dispersion in the built environment. The validation of LES in this field is considered to be of the utmost importance in order to conceive healthier and more sustainable cities. In order to validate the numerical setup adopted, a systematic comparison between numerical and experimental data is performed. The obtained results are intended to be used in the drafting of best practice guidelines for the application of LES in the urban physics field with a particular attention to wind load assessment and pollution dispersion problems.
Resumo:
Safe collaboration between a robot and human operator forms a critical requirement for deploying a robotic system into a manufacturing and testing environment. In this dissertation, the safety requirement for is developed and implemented for the navigation system of the mobile manipulators. A methodology for human-robot co-existence through a 3d scene analysis is also investigated. The proposed approach exploits the advance in computing capability by relying on graphic processing units (GPU’s) for volumetric predictive human-robot contact checking. Apart from guaranteeing safety of operators, human-robot collaboration is also fundamental when cooperative activities are required, as in appliance test automation floor. To achieve this, a generalized hierarchical task controller scheme for collision avoidance is developed. This allows the robotic arm to safely approach and inspect the interior of the appliance without collision during the testing procedure. The unpredictable presence of the operators also forms dynamic obstacle that changes very fast, thereby requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated distance field is computed to speed up reaction time to avoid collision between human operator and the robot. An automated appliance testing also involves robotized laundry loading and unloading during life cycle testing. This task involves Laundry detection, grasp pose estimation and manipulation in a container, inside the drum and during recovery grasping. A wrinkle and blob detection algorithms for grasp pose estimation are developed and grasp poses are calculated along the wrinkle and blobs to efficiently perform grasping task. By ranking the estimated laundry grasp poses according to a predefined cost function, the robotic arm attempt to grasp poses that are more comfortable from the robot kinematic side as well as collision free on the appliance side. This is achieved through appliance detection and full-model registration and collision free trajectory execution using online collision avoidance.
Resumo:
Using Computational Wind Engineering, CWE, for solving wind-related problems is still a challenging task today, mainly due to the high computational cost required to obtain trustworthy simulations. In particular, the Large Eddy Simulation, LES, has been widely used for evaluating wind loads on buildings. The present thesis assesses the capability of LES as a design tool for wind loading predictions through three cases. The first case is using LES for simulating the wind field around a ground-mounted rectangular prism in Atmospheric Boundary Layer (ABL) flow. The numerical results are validated with experimental results for seven wind attack angles, giving a global understanding of the model performance. The case with the worst model behaviour is investigated, including the spatial distribution of the pressure coefficients and their discrepancies with respect to experimental results. The effects of some numerical parameters are investigated for this case to understand their effectiveness in modifying the obtained numerical results. The second case is using LES for investigating the wind effects on a real high-rise building, aiming at validating the performance of LES as a design tool in practical applications. The numerical results are validated with the experimental results in terms of the distribution of the pressure statistics and the global forces. The mesh sensitivity and the computational cost are discussed. The third case is using LES for studying the wind effects on the new large-span roof over the Bologna stadium. The dynamic responses are analyzed and design envelopes for the structure are obtained. Although it is a numerical simulation before the traditional wind tunnel tests, i.e. the validation of the numerical results are not performed, the preliminary evaluations can effectively inform later investigations and provide the final design processes with deeper confidence regarding the absence of potentially unexpected behaviours.
Resumo:
The thesis explores recent technology developments in the field of structural health monitoring and its application to railway bridge projects. It focuses on two main topics. First, service loads and effect of environmental actions are modelled. In particular, the train moving load and its interaction with rail track is considered with different degrees of detail. Hence, results are compared with real-time experimental measurements. Secondly, the work concerns the identification, definition and modelling process of damages for a prestressed concrete railway bridge, and their implementation inside FEM models. Along with a critical interpretation of the in-field measurements, this approach results in the development of undamaged and damaged databases for the AI-aided detection of anomalies and the definition of threshold levels to prompt automatic alert interventions. In conclusion, an innovative solution for the development of the railway weight-in-motion system is proposed.
Resumo:
Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.
Resumo:
L’obiettivo di questa tesi `e l’estensione della conoscenza di un argomento già ampliamente conosciuto e ricercato. Questo lavoro focalizza la propria attenzione su una nicchia dell’ampio mondo della virtualizzazione, del machine learning e delle tecniche di apprendimento parallelo. Nella prima parte verranno spiegati alcuni concetti teorici chiave per la virtualizzazione, ponendo una maggior attenzione verso argomenti di maggior importanza per questo lavoro. La seconda parte si propone di illustrare, in modo teorico, le tecniche usate nelle fasi di training di reti neurali. La terza parte, attraverso una parte progettuale, analizza le diverse tecniche individuate applicandole ad un ambiente containerizzato.
Resumo:
L’elaborato di tesi discute del progetto di integrazione tra ROS 2, framework open-source per lo sviluppo di applicazioni robotiche, e VxWorks, sistema operativo in tempo reale (RTOS), attraverso l’utilizzo di container OCI compliant su VxWorks. L’integrazione è stata svolta all’interno dello stack software di IMA (Industria Macchine Automatiche). Il progetto ha dunque integrato ROS 2 Humble e VxWorks 7 permettendo l’utilizzo di costrutti software di ROS 2 su dei container in esecuzione a livello User su VxWorks. Successivamente è stata creata una applicazione di pick and place con un robot antropomorfo (Universal Robots Ur5e) avvalendosi di ROS 2 Control, framework per l’introduzione e gestione di hardware e controllori, e MoveIt 2, framework per incorporare algoritmi di motion-planning, cinematica, controllo e navigazione. Una volta progettata l’applicazione, il sistema è stato integrato all’interno dell’architettura di controllo di IMA. L’architettura a container VxWorks di IMA è stata estesa per il caso ROS 2, la comunicazione tra campo e applicazione ROS 2 è passata tramite il master EtherCAT e il modulo WebServer presenti nell’architettura IMA. Una volta eseguito il container ROS 2 posizione e velocità dei servo motori sono stati inviati tramite al WebServer di IMA sfruttando la comunicazione VLAN interna. Una volta ricevuto il messaggio, il WebServer si è occupato di trasferirlo al master EtherCAT che in aggiunta si è occupato anche di ottenere le informazioni sullo stato attuale del robot. L’intero progetto è stato sviluppato in prima battuta in ambiente di simulazione per validarne l’architettura. Successivamente si è passati all’installazione in ambiente embedded grazie all’ausilio di IPC sui quali è stato testato l’effettivo funzionamento dell’integrazione all’interno dell’architettura IMA.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
The aim of this study was to use mechanical and photoelastic tests to compare the performance of cannulated screws with other fixation methods in mandibular symphysis fractures. Ten polyurethane mandibles were allocated to each group and fixed as follows: group PRP, 2 perpendicular miniplates; group PLL, 1 miniplate and 1 plate, parallel; and group CS, 2 cannulated screws. Vertical linear loading tests were performed. The differences between mean values were analyzed with the Tukey test. The photoelastic test was carried out using a polariscope. The results revealed differences between the CS and PRP groups at 1, 3, 5, and 10 millimeters of displacement. The photoelastic test confirmed higher stress concentration in all groups close to the mandibular base, whereas the CS group showed it throughout the region assessed. Conical cannulated screws performed well in mechanical and photoelastic tests.
Resumo:
The aim of this study was to evaluate by photoelastic analysis stress distribution on short and long implants of two dental implant systems with 2-unit implant-supported fixed partial prostheses of 8 mm and 13 mm heights. Sixteen photoelastic models were divided into 4 groups: I: long implant (5 × 11 mm) (Neodent), II: long implant (5 × 11 mm) (Bicon), III: short implant (5 × 6 mm) (Neodent), and IV: short implants (5 × 6 mm) (Bicon). The models were positioned in a circular polariscope associated with a cell load and static axial (0.5 Kgf) and nonaxial load (15°, 0.5 Kgf) were applied to each group for both prosthetic crown heights. Three-way ANOVA was used to compare the factors implant length, crown height, and implant system (α = 0.05). The results showed that implant length was a statistically significant factor for both axial and nonaxial loading. The 13 mm prosthetic crown did not result in statistically significant differences in stress distribution between the implant systems and implant lengths studied, regardless of load type (P > 0.05). It can be concluded that short implants showed higher stress levels than long implants. Implant system and length was not relevant factors when prosthetic crown height were increased.
Resumo:
The aim of the present work was to produce a cationic solid lipid nanoparticle (SLN) as non-viral vector for protein delivery. Cationic SLN were produced by double emulsion method, composed of softisan(®) 100, cetyltrimethylammonium bromide (CTAB), Tween(®) 80, Span(®) 80, glycerol and lipoid(®) S75 loading insulin as model protein. The formulation was characterized in terms of mean hydrodynamic diameter (z-ave), polydispersity index (PI), zeta potential (ZP), stability during storage time, stability after lyophilization, effect of toxicity and transfection ability in HeLa cells, in vitro release profile and morphology. SLN were stable for 30days and showed minimal changes in their physicochemical properties after lyophilization. The particles exhibited a relatively slow release, spherical morphology and were able to transfect HeLa cells, but toxicity remained an obstacle. Results suggest that SLN are nevertheless promising for delivery of proteins or nucleic acids for gene therapy.
Resumo:
The aim of this study was to evaluate the degree of conversion (DC) and the cytotoxicity of photo-cured experimental resin composites containing 4-(N,N-dimethylamino)phenethyl alcohol (DMPOH) combined to the camphorquinone (CQ) compared with ethylamine benzoate (EDAB). The resin composites were mechanically blended using 35 wt% of an organic matrix and 65 wt% of filler loading. To this matrix was added 0.2 wt% of CQ and 0.2 wt% of one of the reducing agents tested. 5x1 mm samples (n=5) were previously submitted to DC measurement and then pre-immersed in complete culture medium without 10% (v/v) bovine serum for 1 h or 24 h at 37 °C in a humidifier incubator with 5% CO2 and 95% humidity to evaluate the cytotoxic effects of experimental resin composites using the MTT assay on immortalized human keratinocytes cells. As a result of absence of normal distribution, the statistical analysis was performed using the nonparametric Kruskal-Wallis to evaluate the cytotoxicity and one-way analysis of variance to evaluate the DC. For multiple comparisons, cytotoxicity statistical analyses were submitted to Student-Newman-Keuls and DC analysis to Tukey's HSD post-hoc test (=0.05). No significant differences were found between the DC of DMPOH (49.9%) and EDAB (50.7%). 1 h outcomes showed no significant difference of the cell viability between EDAB (99.26%), DMPOH (94.85%) and the control group (100%). After 24 h no significant difference were found between EDAB (48.44%) and DMPOH (38.06%), but significant difference was found compared with the control group (p>0.05). DMPOH presented similar DC and cytotoxicity compared with EDAB when associated with CQ.
Resumo:
Didanosine-loaded chitosan microspheres were developed applying a surface-response methodology and using a modified Maximum Likelihood Classification. The operational conditions were optimized with the aim of maintaining the active form of didanosine (ddI), which is sensitive to acid pH, and to develop a modified and mucoadhesive formulation. The loading of the drug within the chitosan microspheres was carried out by ionotropic gelation technique with sodium tripolyphosphate (TPP) as cross-linking agent and magnesium hydroxide (Mg(OH)2) to assure the stability of ddI. The optimization conditions were set using a surface-response methodology and applying the Maximum Likelihood Classification, where the initial chitosan concentration, TPP and ddI concentration were set as the independent variables. The maximum ddI-loaded in microspheres (i.e. 1433mg of ddI/g chitosan), was obtained with 2% (w/v) chitosan and 10% TPP. The microspheres depicted an average diameter of 11.42μm and ddI was gradually released during 2h in simulated enteric fluid.