886 resultados para Computer networks.
Broadcast in Adhoc Wireless Networks with Selfish Nodes: A Bayesian Incentive Compatibility Approach
Resumo:
We consider the incentive compatible broadcast (ICB) problem in ad hoc wireless networks with selfish nodes. We design a Bayesian incentive compatible broadcast (BIC-B) protocol to address this problem. VCG mechanism based schemes have been popularly used in the literature to design dominant strategy incentive compatible (DSIC) protocols for ad hoc wireless networks. VCG based mechanisms have two critical limitations: (i) the network is required to be bi-connected, (ii) the resulting protocol is not budget balanced. Our proposed BIC-B protocol overcomes these difficulties. We also prove the optimality of the proposed scheme.
Resumo:
In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged. Formation of such procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions. Research in supply chain management has emphasized that such decisions need to take into account the fact that suppliers and buyers are intelligent and rational agents who act strategically. In this paper, we view the problem of procurement network formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a fair manner. We study the implications of using the Shapley value as a solution concept for forming such procurement networks. We also present a protocol, based on the extensive form game realization of the Shapley value, for forming these networks.
Resumo:
The problem of finding optimal parameterized feedback policies for dynamic bandwidth allocation in communication networks is studied. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider two different classes of multilevel closed-loop feedback policies for the system and use a two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm to find optimal policies within each prescribed class. We study the performance of the proposed algorithm on a numerical setting and show performance comparisons of the two optimal multilevel closedloop policies with optimal open loop policies. We observe that closed loop policies of Class B that tune parameters for both the queues and do not have the constraint that the entire bandwidth be used at each instant exhibit the best results overall as they offer greater flexibility in parameter tuning. Index Terms — Resource allocation, dynamic bandwidth allocation in communication networks, two-timescale SPSA algorithm, optimal parameterized policies. I.
Resumo:
A second order transfer function with two poles and two zeros exhibits a step response characterized by a sudden rise to the steady state value, followed by oscillations around this steady state. With proper choice of the coefficients, it is possible to obtain transfer functions suitable for pulse transmission purposes.
Resumo:
In this paper we report on the outcomes of a research and demonstration project on human intrusion detection in a large secure space using an ad hoc wireless sensor network. This project has been a unique experience in collaborative research, involving ten investigators (with expertise in areas such as sensors, circuits, computer systems,communication and networking, signal processing and security) to execute a large funded project that spanned three to four years. In this paper we report on the specific engineering solution that was developed: the various architectural choices and the associated specific designs. In addition to developing a demonstrable system, the various problems that arose have given rise to a large amount of basic research in areas such as geographical packet routing, distributed statistical detection, sensors and associated circuits, a low power adaptive micro-radio, and power optimising embedded systems software. We provide an overview of the research results obtained.
Resumo:
In this paper, we propose an efficient source routing algorithm for unicast flows, which addresses the scalability problem associated with the basic source routing technique. Simulation results indicate that the proposed algorithm indeed helps in reducing the message overhead considerably, and at the same time it gives comparable performance in terms of resource utilization across a wide range of workloads.
Resumo:
The Radius of Direct attraction of a discrete neural network is a measure of stability of the network. it is known that Hopfield networks designed using Hebb's Rule have a radius of direct attraction of Omega(n/p) where n is the size of the input patterns and p is the number of them. This lower bound is tight if p is no larger than 4. We construct a family of such networks with radius of direct attraction Omega(n/root plog p), for any p greater than or equal to 5. The techniques used to prove the result led us to the first polynomial-time algorithm for designing a neural network with maximum radius of direct attraction around arbitrary input patterns. The optimal synaptic matrix is computed using the ellipsoid method of linear programming in conjunction with an efficient separation oracle. Restrictions of symmetry and non-negative diagonal entries in the synaptic matrix can be accommodated within this scheme.
Resumo:
Researchers can use bond graph modeling, a tool that takes into account the energy conservation principle, to accurately assess the dynamic behavior of wireless sensor networks on a continuous basis.
Resumo:
Wireless Sensor Networks (WSNs) have many application scenarios where external clock synchronisation may be required because a WSN may consist of components which are not connected to each other. In this paper, we first propose a novel weighted average-based internal clock synchronisation (WICS) protocol, which synchronises all the clocks of a WSN with the clock of a reference node periodically. Based on this protocol, we then propose our weighted average-based external clock synchronisation (WECS) protocol. We have analysed the proposed protocols for maximum synchronisation error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our above theoretical claim and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronisation accuracy. A prototype implementation of the WICS protocol using a few TelosB motes also validates the above conclusions.
Resumo:
Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
We consider the problem of secure communication in mobile Wireless Sensor Networks (WSNs). Achieving security in WSNs requires robust encryption and authentication standards among the sensor nodes. Severe resources constraints in typical Wireless Sensor nodes hinder them in achieving key agreements. It is proved from past studies that many notable key management schemes do not work well in sensor networks due to their limited capacities. The idea of key predistribution is not feasible considering the fact that the network could scale to millions. We prove a novel algorithm that provides robust and secure communication channel in WSNs. Our Double Encryption with Validation Time (DEV) using Key Management Protocol algorithm works on the basis of timed sessions within which a secure secret key remains valid. A mobile node is used to bootstrap and exchange secure keys among communicating pairs of nodes. Analysis and simulation results show that the performance of the DEV using Key Management Protocol Algorithm is better than the SEV scheme and other related work.
Resumo:
Information diffusion and influence maximization are important and extensively studied problems in social networks. Various models and algorithms have been proposed in the literature in the context of the influence maximization problem. A crucial assumption in all these studies is that the influence probabilities are known to the social planner. This assumption is unrealistic since the influence probabilities are usually private information of the individual agents and strategic agents may not reveal them truthfully. Moreover, the influence probabilities could vary significantly with the type of the information flowing in the network and the time at which the information is propagating in the network. In this paper, we use a mechanism design approach to elicit influence probabilities truthfully from the agents. Our main contribution is to design a scoring rule based mechanism in the context of the influencer-influencee model. In particular, we show the incentive compatibility of the mechanisms and propose a reverse weighted scoring rule based mechanism as an appropriate mechanism to use.