933 resultados para Computer Generated Proofs
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
Rating systems are used by many websites, which allow customers to rate available items according to their own experience. Subsequently, reputation models are used to aggregate available ratings in order to generate reputation scores for items. A problem with current reputation models is that they provide solutions to enhance accuracy of sparse datasets not thinking of their models performance over dense datasets. In this paper, we propose a novel reputation model to generate more accurate reputation scores for items using any dataset; whether it is dense or sparse. Our proposed model is described as a weighted average method, where the weights are generated using the normal distribution. Experiments show promising results for the proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Many websites offer the opportunity for customers to rate items and then use customers' ratings to generate items reputation, which can be used later by other users for decision making purposes. The aggregated value of the ratings per item represents the reputation of this item. The accuracy of the reputation scores is important as it is used to rank items. Most of the aggregation methods didn't consider the frequency of distinct ratings and they didn't test how accurate their reputation scores over different datasets with different sparsity. In this work we propose a new aggregation method which can be described as a weighted average, where weights are generated using the normal distribution. The evaluation result shows that the proposed method outperforms state-of-the-art methods over different sparsity datasets.
Resumo:
This thesis addressed issues that have prevented qualitative researchers from using thematic discovery algorithms. The central hypothesis evaluated whether allowing qualitative researchers to interact with thematic discovery algorithms and incorporate domain knowledge improved their ability to address research questions and trust the derived themes. Non-negative Matrix Factorisation and Latent Dirichlet Allocation find latent themes within document collections but these algorithms are rarely used, because qualitative researchers do not trust and cannot interact with the themes that are automatically generated. The research determined the types of interactivity that qualitative researchers require and then evaluated interactive algorithms that matched these requirements. Theoretical contributions included the articulation of design guidelines for interactive thematic discovery algorithms, the development of an Evaluation Model and a Conceptual Framework for Interactive Content Analysis.
Resumo:
As a Lecturer of Animation History and 3D Computer Animator, I received a copy of Moving Innovation: A History of Computer Animation by Tom Sito with an element of anticipation in the hope that this text would clarify the complex evolution of Computer Graphics (CG). Tom Sito did not disappoint, as this text weaves together the multiple development streams and convergent technologies and techniques throughout history that would ultimately result in modern CG. Universities now have students who have never known a world without computer animation and many students are younger than the first 3D CG animated feature film, Toy Story (1996); this text is ideal for teaching computer animation history and, as I would argue, it also provides a model for engaging young students in the study of animation history in general. This is because Sito places the development of computer animation within the context of its pre-digital ancestry and throughout the text he continues to link the discussion to the broader history of animation, its pioneers, technologies and techniques...
Resumo:
Process modelling is an integral part of any process industry. Several sugar factory models have been developed over the years to simulate the unit operations. An enhanced and comprehensive milling process simulation model has been developed to analyse the performance of the milling train and to assess the impact of changes and advanced control options for improved operational efficiency. The developed model is incorporated in a proprietary software package ‘SysCAD’. As an example, the milling process model has been used to predict a significant loss of extraction by returning the cush from the juice screen before #3 mill instead of before #2 mill as is more commonly done. Further work is being undertaken to more accurately model extraction processes in a milling train, to examine extraction issues dynamically and to integrate the model into a whole factory model.
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In a tag-based recommender system, the multi-dimensional
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
Double-pulse tests are commonly used as a method for assessing the switching performance of power semiconductor switches in a clamped inductive switching application. Data generated from these tests are typically in the form of sampled waveform data captured using an oscilloscope. In cases where it is of interest to explore a multi-dimensional parameter space and corresponding result space it is necessary to reduce the data into key performance metrics via feature extraction. This paper presents techniques for the extraction of switching performance metrics from sampled double-pulse waveform data. The reported techniques are applied to experimental data from characterisation of a cascode gate drive circuit applied to power MOSFETs.
Resumo:
This paper describes a design framework intended to conceptually map the influence that game design has on the creative activity people engage in during gameplay. The framework builds on behavioral and verbal analysis of people playing puzzle games. The analysis was designed to better understand the extent to which gameplay activities within different games facilitate creative problem solving. We have used an expert review process to evaluate these games in terms of their game design elements and have taken a cognitive action approach to this process to investigate how particular elements produce the potential for creative activity. This paper proposes guidelines that build upon our understanding of the relationship between the creative processes that players undertake during a game and the components of the game that allow these processes to occur. These guidelines may be used in the game design process to better facilitate creative gameplay activity.
Resumo:
This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.
Resumo:
INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2013 evaluation campaign, which consisted of four activities addressing three themes: searching professional and user generated data (Social Book Search track); searching structured or semantic data (Linked Data track); and focused retrieval (Snippet Retrieval and Tweet Contextualization tracks). INEX 2013 was an exciting year for INEX in which we consolidated the collaboration with (other activities in) CLEF and for the second time ran our workshop as part of the CLEF labs in order to facilitate knowledge transfer between the evaluation forums. This paper gives an overview of all the INEX 2013 tracks, their aims and task, the built test-collections, and gives an initial analysis of the results.