981 resultados para Composite resin.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this study was to evaluate the apical sealing ability and the marginal adaptation of five dental materials used in retrofillings or applied to the bevelled root surface. One hundred and forty extracted single rooted human teeth were used, divided into seven groups of twenty each. ln the first, second, third and fourth groups, the teeth were apicoectomized, submitted to cavity preparations and retrofilled with one of the following materiais: zinc free silver amalgam, a dentin bonding system plus composite resin, a glass ionomer cement ora compomer. In the fifth, sixth and seventh groups, the teeth were apicoectomized and capped on the bevelled root surface with one of the following materiais: a dentin bonding system plus composite resin, a glass ionomer cement or a compomer. Two specimens of each experimental group were evaluated for the marginal adaptation using scanning electron microscopy. The remaining 126 specimens were immersed in 2% methylene blue dye, stored for one week at 37ºC and the infiltration was evaluated with a stereomicroscope. The results showed that the glass ionomer cement presented the lowest values of marginal infiltration when used as retrofilling material, with a significant statistical difference when compared with the others tested materials. When used as apical capping, the glass ionomer cement and the compomer were equivalent and significantly better than the dentin bonding system plus composite resin. Using scanning electron microscopy, all the materials showed some slight adjustment problem. ln the retrofilling, the smallest marginal gaps were observed with the compomer and the dentin bonding system plus composite resin, while the largest were observed with the glass ionomer cement and zinc free silver amalgam. ln the apical capping, the smallest marginal gaps were observed with the compomer and the dentin bonding system plus composite resin and ...
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
The disadvantages generated by the acid etching of the dentin, such as an increase in its permeability, in the surface moisture and in the potential to denature the external dentinal collagen, the formation of a fragility zone and the citotoxicity of the adhesive monomers; which are all aggravated by the depth of the dentin, have stimulated new and different treatment philosophies of the dentin. The purpose of the present study, therefore, was to investigate the effects of three dentin treatments: laser irradiation, acid etching and hypermineralization, in the shear bond strength of the SMP Plus bonding system. Sixty bovine incisors were extracted and randomly selected immediatly alter the animal's death. They were kept frozen (-18°C) for no longer than 14 days. After buccal dentinal surface had been exposed, X-Rays were taken to control the dentin thickness. The specimens were separated into two groups: (1) Control, kept in distilled water at 4ºC; (2) Mineralized, kept in hypermineralized solution at 4°C for 14 days. Each group was divided into three sub-groups according to the type of dentin treatment used: group F - followed the manufacturer instructions (acid-etching + primer + bond), group AL (acid-etching + primer + bond + laser) and group LA (laser + (laser + acid-etching + primer + bond). A composite resin standard cylinder (Z100-3M) was bond to the dentinal surface and the shear bond strength performed on a Universal lnstron machine 4301, with 500 Kg load and at 0,5mm/min. speed. The analysis of variance (ANOVA) determined that the treatments influenced the shear bond strength values (p<0,05) with the following average shearing load at failure: AL (9,96 MPa), F (7,28MPa) e LA (4,87 MPa). The interaction between the two factors analyzed Group (control and mineralized) and treatment (F, AL, LA) also influenced the shear bond strength (p<0,05). The highest values were obtained...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The prevalence of dental trauma and its consequences are challenging. This article presents a clinical case of a 9-year-old female who was in a bicycling accident and had a dental intrusion of the left maxillary lateral incisor with extensive dislocation. In the emergency department, surgical repositioning of the intruded tooth and a splinting with steel wire and composite resin was performed and the soft-tissue lesions were sutured. Two weeks after the first visit, pulp necrosis was found and endodontic treatment of the intruded tooth was started with a calcium hydroxide dressing. Despite the traumatic nature of the dental injury, the result of treatment was favorable. After 3 years of follow-up, repair of the resorptions and no signs of ankylosis of the teeth involved were evident. Considering the patient's age and the extent of intrusion, it was concluded that surgical repositioning associated with adequate endodontic therapy was an effective alternative treatment for this case.
Resumo:
Indirect composite resin systems have been routinely recommended for making restorations in distressed patients. The purpose of this study was to evaluate histologically in rats the effect of chronic stress on the reaction of subcutaneous connective tissue after implant of Artglass™. For this purpose, 60 rats were divided into four groups (GI (control), GII (stressed), GIII (Artglass™) and GIV (Artglass™. / stressed) received dorsal subcutaneous implants of polyethylene tubes containing saline solution (GI and GII) or Artglass™ (GIII and GIV). In groups of four animals were sacrificed at 7,14 and 28 days postoperatively. The results allowed to observe more intense inflammatory reaction and tissue organization later in the animals subjected to stress.
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
The objective was to evaluate the effect of thermocycling on the color variation of three different composite resins . We studied was Resin Enamel on 3 levels : ( Esthetic X , Opallis and Venus ) ; Resin Dentin in three levels : ( Esthetic X , Opallis and Venus ) and Thermocycling on level 1 : ( 3,000 cycles ) ; variable was the change of color gauged by spectrophotometry . 60 specimens , subdivided into 6 groups were made : GI - Esthetic X Enamel ; GII - Esthetic X dentin ; GIII - Opallis Enamel ; GIV - Opallis dentin ; GV - Enamel and GVI Venus - Venus dentin . The specimens were prepared with a matrix to standardize samples . The inserts of incrementally resins and polymerized with a halogen light Ultralux unit ( Dabi Atlante , Brazil ) with a power of 450mW / cm ² . After fabrication , underwent color reading with a UV Visible Spectrophotometer reflection , UV -2450 ( Shimadzu , Kyoto , Japan ) , with the changes calculated by the system CIE L * a * b * . Then isolates were stored in artificial saliva at 35 ° C ± 2 ° C during 3 months containers being subjected to the effects of thermal cycling for 3000 cycles over the range of 5C to 55C . Again subjected to chromatic evaluation. For the analysis of the results of color change of the studied resins was applied ANOVA two factors at 5 % . The results showed a statistically equal resins enamel GI and GV ( p = 0.79 ) ; the same was not observed for GI and G III resins , where the color change was higher for resin G III ( p = 0.0000002 ) . The same was observed between G III and GV , where the resin enamel G III showed a statistically superior to the color change ( p = 0.0000005 ) Average . Resins to dentin was there a statistical equality between the materials studied . We conclude that the resins studied change in color and resin enamel G III was the most suffered major color changes after aging by thermocycling .
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required. - See more at: https://www.dentalaegis.com/cced/2011/04/smile-restoration-through-use-of-enamel-microbrasion-associated-with-tooth-bleaching#sthash.N6jz2Bwk.dpuf
Resumo:
The following is a clinical case report of a patient whose main complaint was the presence of a generalized spacing in the anterior maxillary segment. After meticulous clinical analysis and discussions of the clinical procedures to be adopted, a labial frenectomy was our first choice, so that we could reduce the diastemas directly using composite resin. It was observed that the association of clinical and restorative procedures was capable of giving back shape, function and dental aesthetics, allowing to the young patient the satisfaction of smiling without any fear.
Resumo:
This is a clinical case report of a patient who presented with dental stains in the buccal and proximal aspects of the anterior teeth. Buccal stains were removed using the enamel microabrasion technique, and vital tooth bleaching with carbamide peroxide was also performed. Restorative procedures employing composite resin were done for a better result in the proximal aspect of teeth. Clinical significance: The authors observed the combination of these esthetic techniques improved the patient's smile. Today, dental esthetics attempts to imitate natural teeth by making them white, well-shaped, and aligned with no spots. This has enabled the development of several esthetic techniques, such as microabrasion to remove dental enamel surface stains and surface irregularities,1-6 and vital tooth bleaching to treat yellowish teeth.7 The enamel microabrasion technique uses different abrasive agents associated with chemical solutions,1,2,4,6 allowing the removal of intrinsic, hard-texture stains, and different coloring spots on the enamel surface, as well as correction of irregularities on the dental buccal surface.1,8 The various microabrasive products include the Opalustre® (Ultradent Products, http://www.ultradent.com)or Prema® Compound (Premier Dental Products, http://www.premusa.com), a low-concentration hydrochloric acid product associated with silica microparticles that is certainly effective for microabrasion technique,4,6,9,10 providing a good safety profile for the patient and professional. The microabrasion technique also promotes micro-reduction on the adamantine surface.4,5,10 In some cases, after its completion, microabrasion may cause teeth to become darker or yellowish because of the thinner remaining enamel surface, leading to more evident observation of the dentinal tissue, which in general determines tooth color. In these clinical conditions, correction of the color pattern of dental elements can be obtained with carbamide peroxide products applied in custom trays, such as the bleaching products Whiteness Perfect at 10% or 16% (FGM Productos Odontologicos, http://www.fgm.ind.br) or Opalescence® at 10% or 15% (Ultradent Products), with a considerable margin of clinical success, provided it is well indicated, well performed, and supervised by the professional.4,6,9,10 Considering all the aforementioned aspects, the authors present a clinical case about a dental-enamel microabrasion technique used to remove buccal enamel surface stains associated with dental vital bleaching and restorative procedures in the proximal aspect of anterior teeth. - See more at: https://www.dentalaegis.com/cced/2010/08/different-esthetic-techniques-used-in-combination-to-recover-the-smile#sthash.McFoH7El.dpuf
Resumo:
Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required.