995 resultados para Component reuse
Resumo:
This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix, using which a covariance matrix is constructed. A subset of the eigenvectors of the covariance matrix is employed to get the features in the reduced sub space. Each character is modeled as a separate subspace and a modified form of the Mahalanobis distance is derived to classify a given test character. Results indicate that the recognition accuracy using the 2DPCA scheme shows an approximate 3% improvement over the conventional PCA technique.
Resumo:
Computational grids are increasingly being used for executing large multi-component scientific applications. The most widely reported advantages of application execution on grids are the performance benefits, in terms of speeds, problem sizes or quality of solutions, due to increased number of processors. We explore the possibility of improved performance on grids without increasing the application’s processor space. For this, we consider grids with multiple batch systems. We explore the challenges involved in and the advantages of executing long-running multi-component applications on multiple batch sites with a popular multi-component climate simulation application, CCSM, as the motivation.We have performed extensive simulation studies to estimate the single and multi-site execution rates of the applications for different system characteristics.Our experiments show that in many cases, multiple batch executions can have better execution rates than a single site execution.
Resumo:
We consider a dense ad hoc wireless network comprising n nodes confined to a given two dimensional region of fixed area. For the Gupta-Kumar random traffic model and a realistic interference and path loss model (i.e., the channel power gains are bounded above, and are bounded below by a strictly positive number), we study the scaling of the aggregate end-to-end throughput with respect to the network average power constraint, P macr, and the number of nodes, n. The network power constraint P macr is related to the per node power constraint, P macr, as P macr = np. For large P, we show that the throughput saturates as Theta(log(P macr)), irrespective of the number of nodes in the network. For moderate P, which can accommodate spatial reuse to improve end-to-end throughput, we observe that the amount of spatial reuse feasible in the network is limited by the diameter of the network. In fact, we observe that the end-to-end path loss in the network and the amount of spatial reuse feasible in the network are inversely proportional. This puts a restriction on the gains achievable using the cooperative communication techniques studied in and, as these rely on direct long distance communication over the network.
Resumo:
The synthesis, characterization, and reactivity of a chromium(0) complex bearing an amine-borane moiety (eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(3))Cr(CO)(3) (2) is reported. Photolysis of complex 2 results in the elimination of a CO ligand followed by the formation of an intramolecular sigma-borane complex (eta(1)-(eta(6)- C(6)H(5)CH(2)NMe(2)center dot BH(2)-H))Cr(CO)(2) (3). This species was characterized in solution by NMR spectroscopy. Reaction of complex 2 with photochemically generated (OC)(5)Cr(THF) affords a novel homobimetallic sigma-borane complex (OC)(3)Cr(eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(2)-H-Cr(CO)(5)) (4), wherein one of the BH moieties is bound to the chromium center in an eta(1)-fashion. The sigma-borane complex 4 was isolated in moderate to good yield (72%). The BH(3) fragment in the complexes 3 and 4 are highly dynamic involving exchange of the BH hydrogen bound to the metal with the terminal BH hydrogen atoms. The dynamics has been studied using variable-temperature NMR spectroscopy. Complexes 2 and 4 have been characterized by X-ray crystallography.
Resumo:
The Packaging Research Center has been developing next generation system-on-a-package (SOP) technology with digital, RF, optical, and sensor functions integrated in a single package/module. The goal of this effort is to develop a platform substrate technology providing very high wiring density and embedded thin film passive and active components using PWB compatible materials and processes. The latest SOP baseline process test vehicle has been fabricated on novel Si-matched CTE, high modulus C-SiC composite core substrates using 10mum thick BCB dielectric films with loss tangent of 0.0008 and dielectric constant of 2.65. A semi-additive plating process has been developed for multilayer microvia build-up using BCB without the use of any vacuum deposition or polishing/CMP processes. PWB and package substrate compatible processes such as plasma surface treatment/desmear and electroless/electrolytic pulse reverse plating was used. The smallest line width and space demonstrated in this paper is 6mum with microvia diameters in the 15-30mum range. This build-up process has also been developed on medium CTE organic laminates including MCL-E-679F from Hitachi Chemical and PTFE laminates with Cu-Invar-Cu core. Embedded decoupling capacitors with capacitance density of >500nF/cm2 have been integrated into the build-up layers using sol-gel synthesized BaTiO3 thin films (200-300nm film thickness) deposited on copper foils and integrated using vacuum lamination and subtractive etch processes. Thin metal alloy resistor films have been integrated into the SOP substrate using two methods: (a) NiCrAlSi thin films (25ohms per square) deposited on copper foils (Gould Electronics) laminated on the build-up layers and two step etch process for resistor definition, and (b) electroless plated Ni-W-P thin films (70 ohms to few Kohms per square) on the BCB dielectric by plasma surface treatment and activation. The electrical design and build-up layer structure along- - with key materials and processes used in the fabrication of the SOP4 test vehicle were presented in this paper. Initial results from the high density wiring and embedded thin film components were also presented. The focus of this paper is on integration of materials, processes and structures in a single package substrate for system-on-a-package (SOP) implementation
Resumo:
Three-component ferroelectric superlattices consisting of alternating layers of SrTiO3, BaTiO3, and CaTiO3 (SBC) with variable interlayer thickness were fabricated on Pt(111)/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The presence of satellite reflections in x-ray-diffraction analysis and a periodic concentration of Sr, Ba, and Ca throughout the film in depth profile of secondary ion mass spectrometry analysis confirm the fabrication of superlattice structures. The Pr (remnant polarization) and Ps (saturation polarization) of SBC superlattice with 16.4-nm individual layer thickness (SBC16.4) were found to be around 4.96 and 34 μC/cm2, respectively. The dependence of polarization on individual layer thickness and lattice strain were studied in order to investigate the size dependence of the dielectric properties. The dielectric constant of these superlattices was found to be much higher than the individual component layers present in the superlattice configuration. The relatively higher tunability ( ∼ 55%) obtained around 300 K indicates that the superlattice is a potential electrically tunable material for microwave applications at room temperature. The enhanced dielectric properties were thus discussed in terms of the interfacial strain driven polar region due to high lattice mismatch and electrostatic coupling due to polarization mismatch between individual layers.
Resumo:
A system of transport equations have been obtained for plasma of electrons and having a background of positive ions in the presence of an electric and magnetic field. The starting kinetic equation is the well-known Landau kinetic equation. The distribution function of the kinetic equation has been expanded in powers of generalized Hermite polynomials and following Grad, a consistent set of transport equations have been obtained. The expressions for viscosity and heat conductivity have been deduced from the transport equation.
Resumo:
The novel three-component chiral derivatization protocols have been derived for (1)H and (19)F NMR spectroscopic discrimination of a series of chiral hydroxy acids by their coordination and self-assembly with optically active a-methylbenzylamine and 2-formylphenylboronic acid. In addition, the optically pure (S)-mandelic acid in combination with 2-formylphenylboronic acid permits visualization of enantiomers of primary amines. These protocols have been demonstrated on enantiodiscrimination of chiral amines and hydroxy acids.
Resumo:
A new six-component accelerometer force balance is developed and used in the HST2 shock tunnel of Indian Institute of Science. Aerodynamic forces and moments for a hypersonic slender body measured using this balance system at a free stream Mach number of 5.75 and Reynolds number of 1.5 million and stagnation enthalpy of 1.5 and 2 MJ/kg are presented. These measured values compare well with the theoretical values estimated using modified Newtonian theory.
Resumo:
Instruction reuse is a microarchitectural technique that improves the execution time of a program by removing redundant computations at run-time. Although this is the job of an optimizing compiler, they do not succeed many a time due to limited knowledge of run-time data. In this paper we examine instruction reuse of integer ALU and load instructions in network processing applications. Specifically, this paper attempts to answer the following questions: (1) How much of instruction reuse is inherent in network processing applications?, (2) Can reuse be improved by reducing interference in the reuse buffer?, (3) What characteristics of network applications can be exploited to improve reuse?, and (4) What is the effect of reuse on resource contention and memory accesses? We propose an aggregation scheme that combines the high-level concept of network traffic i.e. "flows" with a low level microarchitectural feature of programs i.e. repetition of instructions and data along with an architecture that exploits temporal locality in incoming packet data to improve reuse. We find that for the benchmarks considered, 1% to 50% of instructions are reused while the speedup achieved varies between 1% and 24%. As a side effect, instruction reuse reduces memory traffic and can therefore be considered as a scheme for low power.
Resumo:
Template-assisted formation of multicomponent Pd6 coordination prisms and formation of their self-templated triply interlocked Pd12 analogues in the absence of an external template have been established in a single step through Pd?N/Pd?O coordination. Treatment of cis-[Pd(en)(NO3)2] with K3tma and linear pillar 4,4'-bpy (en=ethylenediamine, H3tma=benzene-1,3,5-tricarboxylic acid, 4,4'-bpy=4,4'-bipyridine) gave intercalated coordination cage [{Pd(en)}6(bpy)3(tma)2]2[NO3]12 (1) exclusively, whereas the same reaction in the presence of H3tma as an aromatic guest gave a H3tma-encapsulating non-interlocked discrete Pd6 molecular prism [{Pd(en)}6(bpy)3(tma)2(H3tma)2][NO3]6 (2). Though the same reaction using cis-[Pd(NO3)2(pn)] (pn=propane-1,2-diamine) instead of cis-[Pd(en)(NO3)2] gave triply interlocked coordination cage [{Pd(pn)}6(bpy)3(tma)2]2[NO3]12 (3) along with non-interlocked Pd6 analogue [{Pd(pn)}6(bpy)3(tma)2](NO3)6 (3'), and the presence of H3tma as a guest gave H3tma-encapsulating molecular prism [{Pd(pn)}6(bpy)3(tma)2(H3tma)2][NO3]6 (4) exclusively. In solution, the amount of 3' decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4'-bpy gave triply interlocked coordination cage [{Pd(pn)}6(pz)3(tma)2]2[NO3]12 (5) as the single product. Interestingly, the same reaction using slightly more bulky cis-[Pd(NO3)2(tmen)] (tmen=N,N,N',N'-tetramethylethylene diamine) instead of cis-[Pd(NO3)2(pn)] gave non-interlocked [{Pd(tmen)}6(pz)3(tma)2][NO3]6 (6) exclusively. Complexes 1, 3, and 5 represent the first examples of template-free triply interlocked molecular prisms obtained through multicomponent self-assembly. Formation of the complexes was supported by IR and multinuclear NMR (1H and 13C) spectroscopy. Formation of guest-encapsulating complexes (2 and 4) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1, 3, 5, and 6 single-crystal X-ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H3tma-encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.
Resumo:
We present two online algorithms for maintaining a topological order of a directed n-vertex acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm handles m arc additions in O(m(3/2)) time. For sparse graphs (m/n = O(1)), this bound improves the best previous bound by a logarithmic factor, and is tight to within a constant factor among algorithms satisfying a natural locality property. Our second algorithm handles an arbitrary sequence of arc additions in O(n(5/2)) time. For sufficiently dense graphs, this bound improves the best previous bound by a polynomial factor. Our bound may be far from tight: we show that the algorithm can take Omega(n(2)2 root(2lgn)) time by relating its performance to a generalization of the k-levels problem of combinatorial geometry. A completely different algorithm running in Theta (n(2) log n) time was given recently by Bender, Fineman, and Gilbert. We extend both of our algorithms to the maintenance of strong components, without affecting the asymptotic time bounds.