948 resultados para Complex Programmable Logic Device (CPLD)
Resumo:
The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species placement. Previous studies have indicated that the genera cannot be separated by morphology alone. Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological approach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi.
Resumo:
The dawn of the twenty-first century encouraged a number of scientific and technological organisations to identify what they saw as ‘Grand Challenges and Opportunities’. Issues of environment and health featured very prominently in these quite short lists, as can be seen from a sample of these challenges in Table 1. Indeed, the first two lists of challenges in Table 1 were identified as for the environment and for health, respectively.
Resumo:
The genera Ustilago, Sporisorium and Macalpinomyces are a polyphyletic complex of plant pathogenic fungi. The four main morphological characters used to define these genera have been considered homoplasious and not useful for resolving the complex. This study re-evaluates character homology and discusses the use of these characters for defining monophyletic groups recovered from a reconstructed phylogeny using four nuclear loci. Generic delimitation of smut fungi based on their hosts is also discussed as a means for identifying genera within this group. Morphological characters and host specificity can be used to circumscribe genera within the Ustilago-Sporisorium-Macalpinomyces complex.
Resumo:
Purpose of review: The study provides a review of current evidence about the role of complex nonpharmacological strategies in managing the multidimensional components of the breathlessness experience for individuals with life-limiting conditions. Recent findings: Evidence continues to demonstrate the significant impact of breathlessness on patients’ quality of life, day-to-day activity, and physical and psychosocial functioning. Recent evidence also confirms that patients draw on a number of self-initiated actions to cope with breathlessness, although many do not use strategies that are supported by a growing body of evidence from randomized controlled trials. Current literature supports the use of multicomponent, nonpharmacological interventions comprising strategies to improve breathing efficiency and reducing psychological distress to manage breathlessness. However trials of these approaches have mostly been conducted among patients with chronic obstructive pulmonary disease (COPD) or lung cancer, and few studies have investigated the benefits of nonpharmacological for patients in later stages of disease. Further investigation of interventions is required across a broader range of chronic life-limiting conditions. Addressing breathlessness and its co-occurring symptoms (symptom clusters) is also an area for future enquiry. Summary: The experience of breathlessness and strategies adopted by patients to manage the experience highlight the importance of multidimensional approaches to improve outcomes for patients with life-limiting conditions. There is good evidence to support the role of multicomponent, nonpharmacological interventions in reducing breathlessness for patients with COPD and lung cancer, although further studies are required to understand the particular clinical contexts in which such interventions are appropriate.
Resumo:
Threats against computer networks evolve very fast and require more and more complex measures. We argue that teams respectively groups with a common purpose for intrusion detection and prevention improve the measures against rapid propagating attacks similar to the concept of teams solving complex tasks known from field of work sociology. Collaboration in this sense is not easy task especially for heterarchical environments. We propose CIMD (collaborative intrusion and malware detection) as a security overlay framework to enable cooperative intrusion detection approaches. Objectives and associated interests are used to create detection groups for exchange of security-related data. In this work, we contribute a tree-oriented data model for device representation in the scope of security. We introduce an algorithm for the formation of detection groups, show realization strategies for the system and conduct vulnerability analysis. We evaluate the benefit of CIMD by simulation and probabilistic analysis.
Resumo:
Introduction: Evaluating the effectiveness of interventions designed to increase the physical activity in communities is often a difficult and complex task, requiring considerable expertise and investment, and often constrained by methodological limitations. These limitations, in turn, create additional challenges when these studies are used in systematic reviews as they hinder the confidence, precision and interpretation of results. The objective of this paper is to summarise the methodological challenges posed in conducting a systematic review of community-wide physical activity interventions to help inform those conducting future primary research and systematic reviews. Methods: We conducted a Cochrane systematic review of community-wide interventions to increase physical activity. We assessed the methodological quality of the included studies. We will investigate these in greater detail, particularly in relation to the potential impact on measures of effect, confidence in results, generalizability of results and general interpretation. Results: The systematic review was conducted and has been published in the Cochrane Library. A logic model was helpful in defining and interpreting the studies. Many studies of unsuitable study design were excluded; however several important methodological limitations of the primary studies evaluating community-wide physical activity interventions emerged. These included: - the failure to use validated tools to measure physical activity; - issues associated with pre and post test designs; - inadequate sampling of populations; - poor control groups; and - intervention and measurement protocols of inadequate duration. Although it is challenging to undertake rigorous evaluations of complex interventions, these issues result in significant uncertainty over the effectiveness of these interventions, and the possible factors required for a community-wide intervention to be successful. In particular, the combination of several of these limitations (e.g. un-validated tools, inadequate sampling, and short duration) is that studies may lack the sensitivity to detect any meaningful change. Multiple publications of findings for the same study also made interpretation difficult; however, interventions with parallel qualitative publications were helpful. Discussion: Evaluating community wide interventions to increase physical activity in a rigorous way is incredibly challenging. These findings reflect these challenges but have important ramifications for researchers conducting primary studies to determine the efficacy of such interventions, as well as for researchers conducting systematic reviews. This new review shows that the inadequacies of design and evaluation are continuing. It is hoped that the adoption of such suggestions may aid in the development of systematic reviews, but more importantly, in enabling translation of such findings into policy and practice.
Resumo:
Many older people have difficulties using modern consumer products due to increased product complexity both in terms of functionality and interface design. Previous research has shown that older people have more difficulty in using complex devices intuitively when compared to the younger. Furthermore, increased life expectancy and a falling birth rate have been catalysts for changes in world demographics over the past two decades. This trend also suggests a proportional increase of older people in the work-force. This realisation has led to research on the effective use of technology by older populations in an effort to engage them more productively and to assist them in leading independent lives. Ironically, not enough attention has been paid to the development of interaction design strategies that would actually enable older users to better exploit new technologies. Previous research suggests that if products are designed to reflect people's prior knowledge, they will appear intuitive to use. Since intuitive interfaces utilise domain-specific prior knowledge of users, they require minimal learning for effective interaction. However, older people are very diverse in their capabilities and domain-specific prior knowledge. In addition, ageing also slows down the process of acquiring new knowledge. Keeping these suggestions and limitations in view, the aim of this study was set to investigate possible approaches to developing interfaces that facilitate their intuitive use by older people. In this quest to develop intuitive interfaces for older people, two experiments were conducted that systematically investigated redundancy (the use of both text and icons) in interface design, complexity of interface structure (nested versus flat), and personal user factors such as cognitive abilities, perceived self-efficacy and technology anxiety. All of these factors could interfere with intuitive use. The results from the first experiment suggest that, contrary to what was hypothesised, older people (65+ years) completed the tasks on the text only based interface design faster than on the redundant interface design. The outcome of the second experiment showed that, as expected, older people took more time on a nested interface. However, they did not make significantly more errors compared with younger age groups. Contrary to what was expected, older age groups also did better under anxious conditions. The findings of this study also suggest that older age groups are more heterogeneous in their capabilities and their intuitive use of contemporary technological devices is mediated more by domain-specific technology prior knowledge and by their cognitive abilities, than chronological age. This makes it extremely difficult to develop product interfaces that are entirely intuitive to use. However, by keeping in view the cognitive limitations of older people when interfaces are developed, and using simple text-based interfaces with flat interface structure, would help them intuitively learn and use complex technological products successfully during early encounter with a product. These findings indicate that it might be more pragmatic if interfaces are designed for intuitive learning rather than for intuitive use. Based on this research and the existing literature, a model for adaptable interface design as a strategy for developing intuitively learnable product interfaces was proposed. An adaptable interface can initially use a simple text only interface to help older users to learn and successfully use the new system. Over time, this can be progressively changed to a symbols-based nested interface for more efficient and intuitive use.
Resumo:
Modern mobile computing devices are versatile, but bring the burden of constant settings adjustment according to the current conditions of the environment. While until today, this task has to be accomplished by the human user, the variety of sensors usually deployed in such a handset provides enough data for autonomous self-configuration by a learning, adaptive system. However, this data is not fully available at certain points in time, or can contain false values. Handling potentially incomplete sensor data to detect context changes without a semantic layer represents a scientific challenge which we address with our approach. A novel machine learning technique is presented - the Missing-Values-SOM - which solves this problem by predicting setting adjustments based on context information. Our method is centered around a self-organizing map, extending it to provide a means of handling missing values. We demonstrate the performance of our approach on mobile context snapshots, as well as on classical machine learning datasets.
Resumo:
Objective: To determine the prevalence, severity, location, etiology, treatment, and healing of medical device-related pressure ulcers in intensive care patients for up to 7 days. Design: Prospective repeated measures study. Setting and participants: Patients in 6 intensive care units of 2 major medical centers, one each in Australia and the United States, were screened 1 day per month for 6 months. Those with device-related ulcers were followed daily up to 7 days. Outcome measures: Device-related ulcer prevalence, pain, infection, treatment, healing. Results: 15/483 patients had device-related ulcers and 9/15 with 11 ulcers were followed beyond screening. Their mean age was 60.5 years, most were men, over-weight, and at increased pressure ulcer risk. Endotracheal and nasogastric tubes were the cause of most device-related ulcers. Repositioning was the most frequent treatment. 4/11 ulcers healed within the 7 day observation period. Conclusion: Device-related ulcer prevalence was 3.1%, similar to that reported in the limited literature available, indicating an ongoing problem. Systematic assessment and repositioning of devices are the mainstays of care. We recommend continued prevalence determination and that nurses remain vigilant to prevent device-related ulcers, especially in patients with nasogastric and endotracheal tubes.
Resumo:
In the modern connected world, pervasive computing has become reality. Thanks to the ubiquity of mobile computing devices and emerging cloud-based services, the users permanently stay connected to their data. This introduces a slew of new security challenges, including the problem of multi-device key management and single-sign-on architectures. One solution to this problem is the utilization of secure side-channels for authentication, including the visual channel as vicinity proof. However, existing approaches often assume confidentiality of the visual channel, or provide only insufficient means of mitigating a man-in-the-middle attack. In this work, we introduce QR-Auth, a two-step, 2D barcode based authentication scheme for mobile devices which aims specifically at key management and key sharing across devices in a pervasive environment. It requires minimal user interaction and therefore provides better usability than most existing schemes, without compromising its security. We show how our approach fits in existing authorization delegation and one-time-password generation schemes, and that it is resilient to man-in-the-middle attacks.
Resumo:
We applied a texture-based flow visualisation technique to a numerical hydrodynamic model of the Pumicestone Passage in southeast Queensland, Australia. The quality of the visualisations using our flow visualisation tool, are compared with animations generated using more traditional drogue release plot and velocity contour and vector techniques. The texture-based method is found to be far more effective in visualising advective flow within the model domain. In some instances, it also makes it easier for the researcher to identify specific hydrodynamic features within the complex flow regimes of this shallow tidal barrier estuary as compared with the direct and geometric based methods.
Resumo:
Pt/anodized TiO2/SiC based metal-oxide-semiconductor (MOS) devices were fabricated and characterized for their sensitivity towards propene (C3H6). Titanium (Ti) thin films were deposited onto the SiC substrates using a filtered cathodic vacuum arc (FCVA) method. Fluoride ions containing neutral electrolyte (0.5 wt% NH4F in ethylene glycol)were used to anodize the Ti films. The anodized films were subsequently annealed at 600 °C for 4 hrs in an oxygen rich environment to obtain TiO2. The current-voltage(I-V) characteristics of the Pt/TiO2/SiC devices were measured in different concentrations of propene. Exposure to the analyte gas caused a change in the Schottky barrier height and hence a lateral shift in the I-V characteristics. The effective change in the barrier height for 1% propene was calculated as 32.8 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 157 mV was measured at 620°C during exposure to 1% propene.
Resumo:
Completing a PhD on time is a complex process, influenced by many interacting factors. In this paper we take a Bayesian Network approach to analyzing the factors perceived to be important in achieving this aim. Focusing on a single research group in Mathematical Sciences, we develop a conceptual model to describe the factors considered to be important to students and then quantify the network based on five individual perspectives: the students, a supervisor and a university research students centre manager. The resultant network comprised 37 factors and 40 connections, with an overall probability of timely completion of between 0.6 and 0.8. Across all participants, the four factors that were considered to most directly influence timely completion were personal aspects, the research environment, the research project, and incoming skills.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.