937 resultados para Columbia Basin
Resumo:
This paper maps the carbonate geochemistry of the Makgadikgadi Pans region of northern Botswana from moderate resolution (500 m pixels) remotely sensed data, to assess the impact of various geomorphological processes on surficial carbonate distribution. Previous palaeo-environmental studies have demonstrated that the pans have experienced several highstands during the Quaternary, forming calcretes around shoreline embayments. The pans are also a significant regional source of dust, and some workers have suggested that surficial carbonate distributions may be controlled, in part, by wind regime. Field studies of carbonate deposits in the region have also highlighted the importance of fluvial and groundwater processes in calcrete formation. However, due to the large area involved and problems of accessibility, the carbonate distribution across the entire Makgadikgadi basin remains poorly understood. The MODIS instrument permits mapping of carbonate distribution over large areas; comparison with estimates from Landsat Thematic Mapper data show reasonable agreement, and there is good agreement with estimates from laboratory analysis of field samples. The results suggest that palaeo-lake highstands, reconstructed here using the SRTM 3 arc-second digital elevation model, have left behind surficial carbonate deposits, which can be mapped by the MODIS instrument. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The Fazzan Basin of south-west Libya is at present arid with less than 20 mm of rainfall per annum. However, regionally extensive limestones, lacustrine sands and coquina (fossiliferous carbonate rock) deposits show that the Fazzan Basin previously contained a large palaeolake, indicating that the climate in the past was more humid. Optically stimulated luminescence (OSL) dating techniques have been applied to key lacustrine deposits within the basin in an attempt to provide an internally consistent chronology for this humidity record. Results indicate that palaeolake sediments within the Fazzan Basin record a very long history of palacohydrological change, ranging from present day and conditions to humidity capable of sustaining a lake with an approximate area of 76,250 km(2). The existence of humid periods in mid oxygen isotope stage 5 and the early Holocene is confirmed. An older lacustrine event, tentatively correlated to oxygen isotope stage 11, is also recognized. In addition, evidence is presented for at least two humid phases beyond the age range over which the conventional OSL dating technique is applicable. This study demonstrates that OSL dating of palaeolake sediments within the Fazzan Basin offers the potential to provide a detailed record of North African humidity spanning several glacial-interglacial cycles. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The freshwaters of the Mersey Basin have been seriously polluted for over 200 years. Anecdotal evidence suggests that the water quality was relatively clean before the start of the Industrial Revolution. The development of the cotton and chemical industries increased the pollution load to rivers, and consequently a decline in biota supported by the water was observed. Industrial prosperity led to a rapid population increase and an increase in domestic effluent. Poor treatment of this waste meant that it was a significant pollutant. As industry intensified during the 19th century, the mix of pollutants grew more complex. Eventually, in the 1980s, the government acknowledged the problem and more effort was made to improve the water quality. Knowledge of social and economic history, as well as anecdotal evidence, has been used in this paper to extrapolate the changes in water quality that occurred. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The Mersey Basin has been significantly polluted for over 200 years. However, there is a lack of quantitative historical water quality data as effective water quality monitoring and data recording only began 30-40 years ago. This paper assesses water pollution in the Mersey Basin using a Water Pollution Index constructed from social and economic data. Methodology, output and the difficulties involved with validation are discussed. With the limited data input available the index approximately reproduces historical water quality. The paper illustrates how historical studies of environmental water quality may provide valuable identification of factors responsible for pollution and a marker set for contemporary and future water quality issues in the context of the past. This is an issue of growing research interest.
Resumo:
Immature and mature calcretes from an alluvial terrace sequence in the Sorbas basin, southeast Spain, were dated by the U-series isochron technique. The immature horizons consistently produced statistically reliable ages of high precision. The mature horizons typically produced statistically unreliable ages but, because of linear trends in the dataset and low errors associated with each data point, it was still possible to place a best-fit isochron through the dataset to produce an age with low associated uncertainties. It is, however, only possible to prove that these statistically unreliable ages have geochronological significance if multiple isochron ages are produced for a single site, and if these multiple ages are stratigraphically consistent. The geochronological significance of such ages can be further proven if at least one of the multiple ages is statistically reliable. By using this technique to date calcretes that have formed during terrace aggradation and at the terrace surface after terrace abandonment it is possible not only to date the timing of terrace aggradation but also to constrain the age at which the river switched from aggradation to incision. This approach, therefore, constrains the timing of changes in fluvial processes more reliably than any currently used geochronological procedure and is appropriate for dating terrace sequences in dryland regions worldwide, wherever calcrete horizons are present. (c) 2005 University of Washington. All rights reserved.
Resumo:
We have integrated information on topography, geology and geomorphology with the results of targeted fieldwork in order to develop a chronology for the development of Lake Megafazzan, a giant lake that has periodically existed in the Fazzan Basin since the late Miocene. The development of the basin can be best understood by considering the main geological and geomorphological events that occurred thought Libya during this period and thus an overview of the palaeohydrology of all Libya is also presented. The origin of the Fazzan Basin appears to lie in the Late Miocene. At this time Libya was dominated by two large rivers systems that flowed into the Mediterranean Sea, the Sahabi River draining central and eastern Libya and the Wadi Nashu River draining much of western Libya. As the Miocene progressed the region become increasingly affected by volcanic activity on its northern and eastern margin that appears to have blocked the River Nashu in Late Miocene or early Messinian times forming a sizeable closed basin in the Fazzan within which proto-Lake Megafazzan would have developed during humid periods. The fall in base level associated with the Messinian desiccation of the Mediterranean Sea promoted down-cutting and extension of river systems throughout much of Libya. To the south of the proto Fazzan Basin the Sahabi River tributary know as Wadi Barjuj appears to have expanded its headwaters westwards. The channel now terminates at Al Haruj al Aswad. We interpret this as a suggestion that Wadi Barjuj was blocked by the progressive development of Al Haruj al Aswad. K/Ar dating of lava flows suggests that this occurred between 4 and 2 Ma. This event would have increased the size of the closed basin in the Fazzan by about half, producing a catchment close to its current size (-350,000 km(2)). The Fazzan Basin contains a wealth of Pleistocene to recent palaeolake sediment outcrops and shorelines. Dating of these features demonstrates evidence of lacustrine conditions during numerous interglacials spanning a period greater than 420 ka. The middle to late Pleistocene interglacials were humid enough to produce a giant lake of about 135,000 km(2) that we have called Lake Megafazzan. Later lake phases were smaller, the interglacials less humid, developing lakes of a few thousand square kilometres. In parallel with these palaeohydrological developments in the Fazzan Basin, change was occurring in other parts of Libya. The Lower Pliocene sea level rise caused sediments to infill much of the Messinian channel system. As this was occurring, subsidence in the Al Kufrah Basin caused expansion of the Al Kufrah River system at the expense of the River Sahabi. By the Pleistocene, the Al Kufrah River dominated the palaeohydrology of eastern Libya and had developed a very large inland delta in its northern reaches that exhibited a complex distributary channel network which at times fed substantial lakes in the Sirt Basin. At this time Libya was a veritable lake district during humid periods with about 10% of the country underwater. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper maps the carbonate geochemistry of the Makgadikgadi Pans region of northern Botswana from moderate resolution (500 m pixels) remotely sensed data, to assess the impact of various geomorphological processes on surficial carbonate distribution. Previous palaeo-environmental studies have demonstrated that the pans have experienced several highstands during the Quaternary, forming calcretes around shoreline embayments. The pans are also a significant regional source of dust, and some workers have suggested that surficial carbonate distributions may be controlled, in part, by wind regime. Field studies of carbonate deposits in the region have also highlighted the importance of fluvial and groundwater processes in calcrete formation. However, due to the large area involved and problems of accessibility, the carbonate distribution across the entire Makgadikgadi basin remains poorly understood. The MODIS instrument permits mapping of carbonate distribution over large areas; comparison with estimates from Landsat Thematic Mapper data show reasonable agreement, and there is good agreement with estimates from laboratory analysis of field samples. The results suggest that palaeo-lake highstands, reconstructed here using the SRTM 3 arc-second digital elevation model, have left behind surficial carbonate deposits, which can be mapped by the MODIS instrument. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The EU Project AquaTerra generates knowledge about the river-soil-sediment-groundwater system and delivers scientific information of value for river basin management. In this article, the use and ignorance of scientific knowledge in decision making is explored by a theoretical review. We elaborate on the 'two-communities theory', which explains the problems of the policy-science interface by relating and comparing the different cultures, contexts, and languages of researchers and policy makers. Within AquaTerra, the EUPOL subproject examines the policy-science interface with the aim of achieving a good connection between the scientific output of the project and EU policies. We have found two major barriers, namely language and resources, as well as two types of relevant relationships: those between different research communities and those between researchers and policy makers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global Scale Impacts) project on climate change impacts on catchment-scale water resources. A detailed description of the unified methodology, subsequently used in all studies in this issue, is provided. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. These scenarios include "policy-relevant" prescribed warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed.
Resumo:
We study the contemporaneous relationship between the intensity of the Indian Summer Monsoon (ISM) and runoff in the major rivers of the Aral Sea basin (Amudarya, Syrdarya) and some of their subcatchments. To this end, we use All-India rainfall (AIR) data, CRU surface observations of precipitation and temperature, ERA40 atmospheric data, and natural discharge data corrected for human interference. We show that there is a highly significant positive correlation between ISM intensity and Amudarya runoff. This finding cannot be explained by the spill-over of ISM precipitation over the Hindu Kush into the Amudarya basin. Instead, we suggest that the observed co-variability is mediated by tropospheric temperature variations due to fluctuations in the ISM intensity. These variations are known to be due to Rossby-wave propagation in response to condensational heating during monsoon precipitation. We hypothesise that the corresponding anomalies in surface temperatures imply anomalies in meltwater formation.