753 resultados para Cold-formed steels
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Crotoxin B is a basic phospholipase A(2) found in the venom of Crotalus durissus terrificus and is one of the subunits that constitute crotoxin. This heterodimeric toxin, which is the main component of C. d. terrificus venom, is completed by an acidic, nontoxic and non-enzymatic component (crotoxin A) and is involved in important envenomation effects, such as neurological disorders, myotoxicity and renal failure. Although crotoxin was first crystallized in 1938, no crystal structure is currently available for crotoxin, crotoxin A or crotoxin B. In this work, the crystallization, X-ray diffraction data collection to 2.28 angstrom resolution and molecular-replacement solution of a novel tetrameric complex formed by two dimers of crotoxin B isoforms (CB1 and CB2) is presented.
Resumo:
Crotoxin B (CB or Cdt PLA(2)) is a basic Asp49-PLA(2) found in the venom of Crotalus durissus terrificus and it is one of the subunits that constitute the crotoxin (Cro). This heterodimeric toxin, main component of the C. d. terrificus venom, is completed by an acidic, nontoxic, and nonenzymatic component (crotoxin A, CA or crotapotin), and it is related to important envenomation effects such as neurological disorders, myotoxicity, and renal failure. Although Cro has been crystallized since 1938, no crystal structure of this toxin or its subunits is currently available. In this work, the authors present the crystal structure of novel tetrameric complex formed by two dimers of crotoxin B isoforms (CB1 and CB2). The results suggest that these assemblies are stable in solution and show that Ser1 and Glu92 of CB1 and CB2, respectively, play an important role in the oligomerization. The tetrameric and dimeric conformations resulting from the association of the isoforms may increase the neurotoxicity of the toxin CB by the creation of new binding sites, which could improve the affinity of the molecular complexes to the presynaptic membrane.
Resumo:
Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.
Resumo:
In adult mammals, severe hypothermia leads to respiratory and cardiac arrest, followed by death. Neonatal rats and hamsters can survive much lower body temperatures and, upon artificial rewarming, spontaneously recover from respiratory arrest (autoresuscitate), typically suffering no long-term effects. To determine developmental and species differences in cold tolerance (defined here as the temperature of respiratory arrest) and its relation to the ability to autoresuscitate, we cooled neonatal and juvenile Sprague-Dawley rats and Syrian hamsters until respiration ceased, followed by rewarming. Ventilation and heartbeat were continuously monitored. In rats, cold tolerance did not change throughout development, however the ability to autoresuscitate from hypothermic respiratory arrest did (lost between postnatal days, P, 14 and 20), suggesting that the mechanisms for maintaining breathing at low temperatures was retained throughout development while those initiating breathing on rewarming were altered. Hamsters, however, showed increased cold tolerance until P26-28 and were able to autoresuscitate into adulthood (provided the heart kept beating throughout respiratory arrest). Also, hamsters were more cold tolerant than rats. We saw no evidence of gasping to initiate breathing following respiratory arrest, contributing to the hypothesis that hypothermic respiratory arrest does not lead to anoxia. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BaP1 is a 22.7-kD P-I-type zinc-dependent metalloproteinase isolated from the venom of the snake Bothrops asper, a medically relevant species in Central America. This enzyme exerts multiple tissue-damaging activities, including hemorrhage, myonecrosis, dermonecrosis, blistering, and edema. BaP1 is a single chain of 202 amino acids that shows highest sequence identity with metalloproteinases isolated front the venoms of snakes of the subfamily Crotalinae. It has six Cys residues involved in three disulfide bridges (Cys 117-Cys 197, Cys 159-Cys 181, Cys 157-Cys 164). It has the consensus sequence H(142)E(143)XXH(146)XXGXXH(152), as well as the sequence C164I165M166, which characterize the metzincin superfamily of metalloproteinases. The active-site cleft separates a major subdomain (residues 1-152), comprising four a-helices and a five-stranded beta-sheet, from the minor subdomain, which is formed by a single a-helix and several loops. The catalytic zinc ion is coordinated by the N-epsilon2 nitrogen atoms of His 142, His 146, and His 152, in addition to a solvent water molecule, which in turn is bound to Glu 143. Several conserved residues contribute to the formation of the hydrophobic pocket, and Met 166 serves as a hydrophobic base for the active-site groups. Sequence and structural comparisons of hemorrhagic and nonhemorrhagic P-I metalloproteinases from snake venoms revealed differences in several regions. In particular, the loop comprising residues 153 to 176 has marked structural differences between metalloproteinases with very different hemorrhagic activities. Because this region lies in close proximity to the active-site microenvironment, it may influence the interaction of these enzymes with physiologically relevant substrates in the extracellular matrix.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter. (c) 2005 Elsevier B.V. All rights reserved.