917 resultados para Climate monitoring and alerting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD was driven by an interest for inclusive and participatory approaches. The methodology that bridges science and society is known as 'citizen science' and is experiencing a huge upsurge worldwide, in the scientific and humanities fields. In this thesis, I have focused on three topics: i) assessing the reliability of data collected by volunteers; ii) evaluating the impact of environmental education activities in tourist facilities; and iii) monitoring marine biodiversity through citizen science. In addition to these topics, during my research stay abroad, I developed a questionnaire to investigate people's perceptions of natural areas to promote the implementation of co-management. The results showed that volunteers are not only able to collect sufficiently reliable data, but that during their participation in this type of project, they can also increase their knowledge of marine biology and ecology and their awareness of the impact of human behaviour on the environment. The short-term analysis has shown that volunteers are able to retain what they have learned. In the long term, knowledge is usually forgotten, but awareness is retained. Increased awareness could lead to a change in behaviour and in this case a more environmentally friendly attitude. This aspect could be of interest for the development of environmental education projects in tourism facilities to reduce the impact of tourism on the environment while adding a valuable service to the tourism offer. We also found that nature experiences in childhood are important to connect to nature in adulthood. The results also suggest that membership or volunteering in an environmental education association could be a predictor of people's interest in more participatory approaches to nature management. In most cases, the COVID -19 pandemic had not changed participants' perceptions of the natural environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Smart Grid needs a large amount of information to be operated and day by day new information is required to improve the operation performance. It is also fundamental that the available information is reliable and accurate. Therefore, the role of metrology is crucial, especially if applied to the distribution grid monitoring and the electrical assets diagnostics. This dissertation aims at better understanding the sensors and the instrumentation employed by the power system operators in the above-mentioned applications and studying new solutions. Concerning the research on the measurement applied to the electrical asset diagnostics: an innovative drone-based measurement system is proposed for monitoring medium voltage surge arresters. This system is described, and its metrological characterization is presented. On the other hand, the research regarding the measurements applied to the grid monitoring consists of three parts. The first part concerns the metrological characterization of the electronic energy meters’ operation under off-nominal power conditions. Original test procedures have been designed for both frequency and harmonic distortion as influence quantities, aiming at defining realistic scenarios. The second part deals with medium voltage inductive current transformers. An in-depth investigation on their accuracy behavior in presence of harmonic distortion is carried out by applying realistic current waveforms. The accuracy has been evaluated by means of the composite error index and its approximated version. Based on the same test setup, a closed-form expression for the measured current total harmonic distortion uncertainty estimation has been experimentally validated. The metrological characterization of a virtual phasor measurement unit is the subject of the third and last part: first, a calibrator has been designed and the uncertainty associated with its steady-state reference phasor has been evaluated; then this calibrator acted as a reference, and it has been used to characterize the phasor measurement unit implemented within a real-time simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The way we live has revealed a lot about the choices made in the last decades. These choices are mostly based on a predatory socioeconomic structure, based on the pillars of anthropocentrism and inconsistent with the principles of global sustainability. This structure based on fossil fuels degrades the environment and directly and indirectly impacts the biomes. According to The International Energy Agency (2020), the sector was responsible for more than a third of global energy consumption and 40% of total GHG emissions into the atmosphere (directly and indirectly). This thesis presents the main effects of climate change observed in the built environment and at the urban territorial scale, through a review of the state of the art of the subject in the last decade (2010-2021). The thesis breaks down the projectual process seeking to identify how the architect and urban planner can mitigate the effects of climate change, adapting existing structures or in projects, and also promoting the expansion of the resilience of these building systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated on a continental and global scale. The main goal of this study, therefore, is to quantify the changes in instantaneous shortwave albedo produced by biomass burning activities and their associated radiative forcing. The study relies on the MODerate-resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned-area product to create an annual composite of areas affected by fire and the MCD43C2 bidirectional reflectance distribution function (BRDF) albedo snow-free product to compute a bihemispherical reflectance time series. The approximate day of burning is used to calculate the instantaneous change in shortwave albedo. Using the corresponding National Centers for Environmental Prediction (NCEP) monthly mean downward solar radiation flux at the surface, the global radiative forcing associated with fire was computed. The analysis reveals a mean decrease in shortwave albedo of −0.014 (1σ = 0.017), causing a mean positive radiative forcing of 3.99 Wm−2 (1σ = 4.89) over the 2002–20012 time period in areas affected by fire. The greatest drop in mean shortwave albedo change occurs in 2002, which corresponds to the highest total area burned (378 Mha) observed in the same year and produces the highest mean radiative forcing (4.5 Wm−2). Africa is the main contributor in terms of burned area, but forests globally give the highest radiative forcing per unit area and thus give detectable changes in shortwave albedo. The global mean radiative forcing for the whole period studied (~0.0275 Wm−2) shows that the contribution of fires to the Earth system is not insignificant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decade Mongolia’s region was characterized by a rapid increase of both severity and frequency of drought events, leading to pasture reduction. Drought monitoring and assessment plays an important role in the region’s early warning systems as a way to mitigate the negative impacts in social, economic and environmental sectors. Nowadays it is possible to access information related to the hydrologic cycle through remote sensing, which provides a continuous monitoring of variables over very large areas where the weather stations are sparse. The present thesis aimed to explore the possibility of using NDVI as a potential drought indicator by studying anomaly patterns and correlations with other two climate variables, LST and precipitation. The study covered the growing season (March to September) of a fifteen year period, between 2000 and 2014, for Bayankhongor province in southwest Mongolia. The datasets used were MODIS NDVI, LST and TRMM Precipitation, which processing and analysis was supported by QGIS software and Python programming language. Monthly anomaly correlations between NDVI-LST and NDVI-Precipitation were generated as well as temporal correlations for the growing season for known drought years (2001, 2002 and 2009). The results show that the three variables follow a seasonal pattern expected for a northern hemisphere region, with occurrence of the rainy season in the summer months. The values of both NDVI and precipitation are remarkably low while LST values are high, which is explained by the region’s climate and ecosystems. The NDVI average, generally, reached higher values with high precipitation values and low LST values. The year of 2001 was the driest year of the time-series, while 2003 was the wet year with healthier vegetation. Monthly correlations registered weak results with low significance, with exception of NDVI-LST and NDVI-Precipitation correlations for June, July and August of 2002. The temporal correlations for the growing season also revealed weak results. The overall relationship between the variables anomalies showed weak correlation results with low significance, which suggests that an accurate answer for predicting drought using the relation between NDVI, LST and Precipitation cannot be given. Additional research should take place in order to achieve more conclusive results. However the NDVI anomaly images show that NDVI is a suitable drought index for Bayankhongor province.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One-PEP725-has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other-NECTAR-includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change and variability in sub-Saharan West Africa is expected to have negative consequences for crop and livestock farming due to the strong dependence of these sectors on rainfall and natural resources, and the low adaptive capacity of crops farmers, agro-pastoralist and pastoralists in the region. The objective of this PhD research was to investigate the anticipated impacts of expected future climate change and variability on nutrition and grazing management of livestock in the prevailing extensive agro-pastoral and pastoral systems of the Sahelian and Sudanian zones of Burkina Faso. To achieve this, three studies were undertaken in selected village territories (100 km² each) in the southern Sahelian (Taffogo), northern Sudanian (Nobere, Safane) and southern Sudanian (Sokouraba) zone of the country during 2009 and 2010. The choice of two villages in the northern Sudanian zone was guided by the dichotomy between intense agricultural land use and high population density near Safane, and lower agricultural land use in the tampon zone between the village of Nobere and the National Park Kaboré Tambi of Pô. Using global positioning and geographical information systems tools, the spatio-temporal variation in the use of grazing areas by cattle, sheep and goats, and in their foraging behaviour in the four villages was assessed by monitoring three herds each per species during a one-year cycle (Chapter 2). Maximum itinerary lengths (km/d) were observed in the hot dry season (March-May); they were longer for sheep (18.8) and cattle (17.4) than for goats (10.5, p<0.05). Daily total grazing time spent on pasture ranged from 6 - 11 h with cattle staying longer on pasture than small ruminants (p<0.05). Feeding time accounted for 52% - 72% of daily time on pasture, irrespective of species. Herds spent longer time on pasture and walked farther distances in the southern Sahelian than the two Sudanian zones (p<0.01), while daily feeding time was longer in the southern Sudanian than in the other two zones (p>0.05). Proportional time spent resting decreased from the rainy (June - October) to the cool (November - February) and hot dry season (p<0.05), while in parallel the proportion of walking time increased. Feeding time of all species was to a significantly high proportion spent on wooded land (tree crown cover 5-10%, or shrub cover >10%) in the southern Sahelian zone, and on forest land (tree crown cover >10%) in the two Sudanian zones, irrespective of season. It is concluded that with the expansion of cropland in the whole region, remaining islands of wooded land, including also fields fallowed for three or more years with their considerable shrub cover, are particularly valuable pasturing areas for ruminant stock. Measures must be taken that counteract the shrinking of wooded land and forests across the whole region, including also active protection and (re)establishment of drought-tolerant fodder trees. Observation of the selection behaviour of the above herds of cattle and small ruminant as far as browse species were concerned, and interviews with 75 of Fulani livestock keepers on use of browse as feed by their ruminant stock and as remedies for animal disease treatment was undertaken (Chapter 3) in order to evaluate the consequence of climate change for the contribution of browse to livestock nutrition and animal health in the extensive grazing-based livestock systems. The results indicated that grazing cattle and small ruminants do make considerable use of browse species on pasture across the studied agro-ecological zones. Goats spent more time (p<0.01) feeding on browse species than sheep and cattle, which spent a low to moderate proportion of their feeding time on browsing in any of the study sites. As far as the agro-ecological zones were concerned, the contribution of browse species to livestock nutrition was more important in the southern Sahelian and northern Sudanian zone than the southern Sudanian zone, and this contribution is higher during the cold and hot dry season than during the rainy season. A total of 75 browse species were selected on pasture year around, whereby cattle strongly preferred Afzelia africana, Pterocarpus erinaceus and Piliostigma sp., while sheep and goats primarily fed on Balanites aegyptiaca, Ziziphus mauritiana and Acacia sp. Crude protein concentration (in DM) of pods or fruits of the most important browse species selected by goats, sheep and cattle ranged from 7% to 13% for pods, and from 10% to 18% for foliage. The concentration of digestible organic matter of preferred browse species mostly ranged from 40% to 60%, and the concentrations of total phenols, condensed tannins and acid detergent lignin were low. Linear regression analyses showed that browse preference on pasture is strongly related to its contents (% of DM) of CP, ADF, NDF and OM digestibility. Interviewed livestock keepers reported that browse species are increasingly use by their grazing animals, while for animal health care use of tree- and shrub-based remedies decreased over the last two decades. It is concluded that due to climate change with expected negative impact on the productivity of the herbaceous layer of communal pastures browse fodder will gain in importance for animal nutrition. Therefore re-establishment and dissemination of locally adapted browse species preferred by ruminants is needed to increase the nutritional situation of ruminant stock in the region and contribute to species diversity and soil fertility restoration in degraded pasture areas. In Chapter 4 a combination of household surveys and participatory research approaches was used in the four villages, and additionally in the village of Zogoré (southern Sahelian zone) and of Karangasso Vigué (northern Sudanian zone) to investigate pastoralists’ (n= 76) and agro-pastoralists’ (n= 83) perception of climate change, and their adaptation strategies in crop and livestock production at farm level. Across the three agro-ecological zones, the majority of the interviewees perceived an increase in maximum day temperatures and decrease of total annual rainfall over the last two decades. Perceptions of change in climate patterns were in line with meteorological data for increased temperatures while for total rainfall farmers’ views contrasted the rainfall records which showed a slight increase of precipitation. According to all interviewees climate change and variability have negative impacts on their crop and animal husbandry, and most of them already adopted some coping and adaptation strategies at farm level to secure their livelihoods and reduce negative impacts on their farming system. Although these strategies are valuable and can help crop and livestock farmers to cope with the recurrent droughts and climate variability, they are not effective against expected extreme climate events. Governmental and non-governmental organisations should develop effective policies and strategies at local, regional and national level to support farmers in their endeavours to cope with climate change phenomena; measures should be site-specific and take into account farmers’ experiences and strategies already in place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP) have identified collaborations and scientific priorities to accelerate advances in analysis and prediction at subseasonal-to-seasonal time scales, which include i) advancing knowledge of mesoscale–planetary-scale interactions and their prediction; ii) developing high-resolution global–regional climate simulations, with advanced representation of physical processes, to improve the predictive skill of subseasonal and seasonal variability of high-impact events, such as seasonal droughts and floods, blocking, and tropical and extratropical cyclones; iii) contributing to the improvement of data assimilation methods for monitoring and predicting used in coupled ocean–atmosphere–land and Earth system models; and iv) developing and transferring diagnostic and prognostic information tailored to socioeconomic decision making. The document puts forward specific underpinning research, linkage, and requirements necessary to achieve the goals of the proposed collaboration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture’s mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Jamaica to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Jamaica. It also has the potential to provide essential input for identifying and preparing policies and strategies to help move the Region closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The outcomes from investigating the agriculture sector indicate that for the sugar-cane subsector the harvests under both the A2 and B2 scenarios decrease at first and then increase as the mid-century mark is approached. With respect to the yam subsector the results indicate that the yield of yam will increase from 17.4 to 23.1 tonnes per hectare (33%) under the A2 scenario, and 18.4 to 23.9 (30%) tonnes per hectare under the B2 scenario over the period 2011 to 2050. Similar to the forecasts for yam, the results for escallion suggest that yields will continue to increase to mid-century. Adaptation in the sugar cane sub-sector could involve replanting and irrigation that appear to generate net benefits at the three selected discount rates for the A2 scenario, but only at a discount rate of 1% for the B2 scenario. For yam and escallion, investment in irrigation will earn significant net benefits for both the A2 and B2 scenarios at the three selected rates of discount. It is recommended that if adaptation strategies are part of a package of strategies for improving efficiency and hence enhancing competitiveness, then the yields of each crop can be raised sufficiently to warrant investment in adaptation to climate change. The analysis of the health sector demonstrates the potential for climate change to add a substantial burden to the future health systems in Jamaica, something that that will only compound the country’s vulnerability to other anticipated impacts of climate change. The results clearly show that the incidence of dengue fever will increase if climate change continues unabated, with more cases projected for the A2 scenario than the B2. The models predicted a decrease in the incidence of gastroenteritis and leptospirosis with climate change, indicating that Jamaica will benefit from climate change with a reduction in the number of cases of gastroenteritis and leptospirosis. Due to the long time horizon anticipated for climate change, Jamaica should start implementing adaptation strategies focused on the health sector by promoting an enabling environment, strengthening communities, strengthening the monitoring, surveillance and response systems and integrating adaptation into development plans and actions. Small-island developing states like Jamaica must be proactive in implementing adaptation strategies, which will reduce the risk of climate change. On the global stage the country must continue to agitate for the implementation of the mitigation strategies for developed countries as outlined in the Kyoto protocol. The results regarding the tourism sector suggest that the sector is likely to incur losses due to climate change, the most significant of which is under the A2 scenario. Climatic features, such as temperature and precipitation, will affect the demand for tourism in Jamaica. By 2050 the industry is expected to lose US$ 132.2 million and 106.1 million under the A2 and B2 scenarios, respectively. In addition to changes in the climatic suitability for tourism, climate change is also likely to have important supply-side effects from extreme events and acidification of the ocean. The expected loss from extreme events is projected to be approximately US$ 5.48 billion (A2) and US$ 4.71 billion (B2). Even more devastating is the effect of ocean acidification on the tourism sector. The analysis shows that US$ 7.95 billion (A2) and US$ 7.04 billion is expected to be lost by mid-century. The benefit-cost analysis indicates that most of the adaptation strategies are expected to produce negative net benefits, and it is highly likely that the cost burden would have to be carried by the state. The options that generated positive ratios were: redesigning and retrofitting all relevant tourism facilities, restoring corals and educating the public and developing rescue and evacuation plans. Given the relative importance of tourism to the macroeconomy one possible option is to seek assistance from multilateral funding agencies. It is recommended that the government first undertake a detailed analysis of the vulnerability of each sector and, in particular tourism, to climate change. Further, more realistic socio-economic scenarios should be developed so as to inform future benefit-cost analysis.