966 resultados para Circular dichroism
Resumo:
A new poly(ethylene oxide)-tetraphenylalanine polymer-peptide conjugate has been prepared via a “click” reaction between an alkyne-modified peptide and an azide-terminated PEO oligomer. Self-assembled nanotubes are formed after dialysis of a THF solution of this polymer-peptide conjugate against water. The structure of these nanotubes has been probed by circular dichroism, IR, TEM, and SAXS. From these data, it is apparent that self-assembly involves the formation of antiparallel ß-sheets and p-p-stacking. Nanotubes are formed at concentrations between 2 and 10 mg mL-1. Entanglement between adjacent nanotubes occurs at higher concentrations, resulting in the formation of soft hydrogels. Gel strength increases at higher polymer-peptide conjugate concentration, as expected.
Resumo:
Human adrenomedullin (AM) is a 52-amino acid peptide belonging to the calcitonin peptide family, which also includes calcitonin gene-related peptide (CGRP) and AM2. The two AM receptors, AM(1) and AM(2), are calcitonin receptor-like receptor (CL)/receptor activity-modifying protein (RAMP) (RAMP2 and RAMP3, respectively) heterodimers. CGRP receptors comprise CL/RAMP1. The only human AM receptor antagonist (AM(22-52)) is a truncated form of AM; it has low affinity and is only weakly selective for AM(1) over AM(2) receptors. To develop novel AM receptor antagonists, we explored the importance of different regions of AM in interactions with AM(1), AM(2), and CGRP receptors. AM(22-52) was the framework for generating further AM fragments (AM(26-52) and AM(30-52)), novel AM/alphaCGRP chimeras (C1-C5 and C9), and AM/AM(2) chimeras (C6-C8). cAMP assays were used to screen the antagonists at all receptors to determine their affinity and selectivity. Circular dichroism spectroscopy was used to investigate the secondary structures of AM and its related peptides. The data indicate that the structures of AM, AM2, and alphaCGRP differ from one another. Our chimeric approach enabled the identification of two nonselective high-affinity antagonists of AM(1), AM(2), and CGRP receptors (C2 and C6), one high-affinity antagonist of AM(2) receptors (C7), and a weak antagonist selective for the CGRP receptor (C5). By use of receptor mutagenesis, we also determined that the C-terminal nine amino acids of AM seem to be responsible for its interaction with Glu74 of RAMP3. We provide new information on the structure-activity relationship of AM, alphaCGRP, and AM2 and how AM interacts with CGRP and AM(2) receptors.
Resumo:
The calcitonin gene-related peptide (CGRP) receptor is an unusual G protein-coupled receptor (GPCR) in that it comprises the calcitonin receptor-like receptor (CLR), receptor activity modifying protein 1 (RAMP1) and the receptor component protein (RCP). The RAMP1 has two other homologues – RAMP2 and RAMP3. The endogenous ligand for this receptor is CGRP, a 37 amino acid neuropeptide that act as a vasodilator. This peptide has been implicated in the aetiology of health conditions such as inflammation, Reynaud’s disease and migraine. A clear understanding of the mode of activation of this receptor could be key in developing therapeutic agents for associated health conditions. Although the crystal structure of the N-terminal extracellular domain (ECD) of this receptor (in complex with an antagonist) has been published, the details of receptor-agonist interactions at this domain, and so ultimately the mechanism of receptor activation, are still unclear. Also, the C-terminus of the CLR (in the CGRP receptor), especially around the presumed helix 8 (H8) region, has not been well studied for its role in receptor signalling. This research project investigated these questions. In this study, certain residues making up the putative N-terminal ligand-binding core of the CLR (in the CGRP receptor) were mapped out and found to be crucial for receptor signalling. They included W69 and D70 of the WDG motif in family B GPCRs, as well as Y91, F92, D94 and F95 in loop 2 of CLR N-terminus. Also, F163 at the cytoplasmic end of TM1 and certain residues spanning H8 and associated C-terminal region of CLR were found to be required for CGRP receptor signalling. These residues were investigated by site-directed mutagenesis where they were mutated to alanine (or other residues in specific cases) and the effect of the mutations on receptor pharmacology assessed by evaluating cAMP production, cell surface expression, total cell expression and aCGRP-mediated receptor internalization. Moreover, the N-terminal ECDs of the CLR and RAMPs (RAMP1, RAMP2 and RAMP3) were produced in a yeast host strain (Pichia pastoris) for the purpose of structural interaction study by surface plasmon resonance (SPR). Following expression and purification, these receptor proteins were found to individually retain their secondary structures when analysed by circular dichroism (CD). Results were analysed and interpreted with the knowledge of the secretin family receptor paradigm. The research described in this thesis has produced novel data that contributes to a clearer understanding of CGRP receptor pharmacology. The study on CLR and RAMPs ECDs could be a useful tool in determining novel interacting GPCR partners of RAMPs.
Resumo:
The amphibian antimicrobial peptide pseudin-2 is a peptide derived from the skin of the South-American frog Pseudis paradoxa (Olson et al., 2001). This peptide possesses tremendous potential as a therapeutic lead since it has been shown to possess both antimicrobial as well insulin-releasing properties (Olson et al., 2001; Abdel-Wahab et al., 2008). This study aimed to develop pseudin-2’s potential by understanding and improving its properties as an antimicrobial agent. The structure-function relationships of pseudin-2 were explored using a combination of in-vitro and in-silico techniques, with an aim to predict how the structure of the peptide may be altered in order to improve its efficacy. A library of pseudin-2 mutants was generated by randomizing codons at positions 10, 14 and 18 of a synthetic gene, using NNK saturation mutagenesis. Analysis of these novel peptides broadly confirmed, in line with literature precedent, that anti-microbial activity increases with increased positive charge. Specifically, 2 positively-charged residues at positions 10 and 14 and a hydrophobic at position 18 are preferred. However, substitution at position 14 with some polar, non-charged residues also created peptides with antimicrobial activity. Interestingly, the pseudin-2 analogue [10-E, 14-Q, 18-L] which is identical to pseudin-2, except that the residues at positions 10 and 14 are switched, showed no anti-microbial activity at all. Molecular dynamics simulations of pseudin-2 showed that the peptide possesses two equilibrium structures in a membrane environment: a linear and a kinked a-helix which both embed into the membrane at an angle. Biophysical characterization using circular dichroism spectroscopy confirmed that the peptide is helical within the membrane environment whilst linear dichroism established that the peptide has no defined orientation within the membrane. Collectively, these data indicate that Pseudin-2 exerts its antimicrobial activity via the carpet model.
Resumo:
Partial reduction of racemic methoxysilanes by 1:1 complexes of lithium aluminium hydride with optically active cinchona and ephedra alkaloids give optically active silanes and methoxysilanes. Optical yields depend on the groups attached to silicon and the alkaloid used but in some cases approach 50%, The method has been used to prepare novel optically active organosilanes, possessing an asymmetric silicon centre, which are either inaccessible by any of the other available routes or would require a time consuming preparation. Such compounds are of use in the study of the mechanism of substitutions at silicon. Attempts have been made to rationalize the results of the asymmetric reductions in terms of differences in sterio and electronic interactions in diastereoisomeric transition states. Circular dichroism and optical rotatory dispersion spectra have been obtained for the optically active products in an attempt to elucidate the absolute configurations of the novel asymmetric organosilanes. The results from these studies provide a useful addition to the data so far accumulated for asymmetrically perturbed aromatic chromophores. Nuclear magnetic resonanoe studies of diastereoisomaric (-)-menthoxysilanes show that these compounds possess resonances extremely useful in the determination of optical purities for asymmetric organosilanes which possess an aromatic group. The effect of variable temperature on the spectra has revealed evidence for the conformational preferences in these compounds. Other diastereoisomeric alkoxysilanes have been prepared and their n.m.r.spectra studied in the hope of establishing trends. Exploratory studies for other asymmetric reactions proceeding at silicon have proved unfruitful.
Resumo:
Fe3O4 GaAs hybrid structures have been studied using reflection high-energy electron diffraction (RHEED), x-ray photoelectron spectroscopy (XPS), x-ray magnetic circular dichroism (XMCD), and low-temperature vibrating-sample magnetometry (VSM). The samples were prepared by oxidizing epitaxial Fe thin films in a partial pressure of 5× 10-5 mbar of oxygen at 500 K for 180 s. Clear RHEED patterns were observed, suggesting the epitaxial growth of Fe oxides with a cubic structure. The XPS spectra show that the oxides were Fe3O4 rather than γ- Fe2O3, as there were no shake-up satellites between the two Fe 2p peaks. This was further confirmed by the XMCD measurements, which show ferromagnetic coupling between the Fe cations, with no evidence of intermixing at the interface. The VSM measurements show that the films have a magnetic uniaxial anisotropy and a "quick" saturation property, with the easy axes along the [011] direction. This detailed study offers further insight into the structure, interface, and magnetic properties of this hybrid Fe3O4 GaAs (100) structure as a promising system for spintronic application. © 2005 American Institute of Physics.
Resumo:
Ultrathin Fe oxide films of various thicknesses prepared by post-growth oxidation on GaAs(100) surface have been investigated with X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). The XPS confirms that the surfaces of the oxide are Fe3O4 rather than Fe2O3. XAS and XMCD measurements indicate the presence of insulating Fe divalent oxide phases (FeO) beneath the surface Fe3O4 layer with the sample thickness above 4 nm. This FeO might act as a barrier for the spin injection into the GaAs.
Resumo:
The growth and magnetic properties of epitaxial magnetite Fe3O4 on GaAs(100) have been studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. The epitaxial Fe3O4 films were synthesized by in situ post growth annealing of ultrathin epitaxial Fe films at 500K in an oxygen partial pressure of 5×10−5mbar. The XMCD measurements show characteristic contributions from different sites of the ferrimagnetic magnetite unit cell, namely, Fetd3+, Feoh2+, and Feoh3+. The epitaxial relationship was found to be Fe3O4(100)⟨011⟩∕∕GaAs(100)⟨010⟩ with the unit cell of Fe3O4 rotated by 45° to match that of GaAs(100) substrate. The films show a uniaxial magnetic anisotropy in a thickness range of about 2.0–6.0nm with the easy axes along the [011] direction of the GaAs(100) substrate.
Resumo:
Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.
Resumo:
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin and they are usually accompanied by fibrotic reactions that result in the production of a scar. Natural biopolymers such as collagen have been a lot investigated as potential source of biomaterial for skin replacement in Tissue Engineering. Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role in connective tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches, as skin tissue engineering. In addition, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are skin and bone from bovine and porcine origin. However, these last carry high risk of bovine spongiform encephalopathy or transmissible spongiform encephalopathy and immunogenic responses. On the other hand, the increase of jellyfish has led us to consider this marine organism as potential collagen source for tissue engineering applications. In the present study, novel form of acid and pepsin soluble collagen were extracted from dried Rhopilema hispidum jellyfish species in an effort to obtain an alternative and safer collagen. We studied different methods of collagen purification (tissues and experimental procedures). The best collagen yield was obtained using pepsin extraction method (34.16 mg collagen/g of tissue). The isolated collagen was characterized by SDS-polyacrylamide gel electrophoresis and circular dichroism spectroscopy.
Resumo:
This paper details methodologies that have been explored for the fast proofing of on-chip architectures for Circular Dichroism techniques. Flow-cell devices fabricated from UV transparent Quartz are used for these experiments. The complexity of flow-cell production typically results in lead times of six months from order to delivery. Only at that point can the on-chip architecture be tested empirically and any required modifications determined ready for the next six month iteration phase. By using the proposed 3D printing and PDMS moulding techniques for fast proofing on-chip architectures the optimum design can be determined within a matter of hours prior to commitment to quartz chip production.
Resumo:
Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.
Resumo:
FtsZ, a bacterial tubulin homologue, is a cytoskeleton protein that plays key roles in cytokinesis of almost all prokaryotes. FtsZ assembles into protofilaments (pfs), one subunit thick, and these pfs assemble further to form a “Z ring” at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane, and also serves as a scaffold to recruit cell-wall remodeling proteins for complete cell division in vivo. FtsZ can be subdivided into 3 main functional regions: globular domain, C terminal (Ct) linker, and Ct peptide. The globular domain binds GTP to assembles the pfs. The extreme Ct peptide binds membrane proteins to allow cytoplasmic FtsZ to function at the inner membrane. The Ct linker connects the globular domain and Ct peptide. In the present studies, we used genetic and structural approaches to investigate the function of Escherichia coli (E. coli) FtsZ. We sought to examine three questions: (1) Are lateral bonds between pfs essential for the Z ring? (2) Can we improve direct visualization of FtsZ in vivo by engineering an FtsZ-FP fusion that can function as the sole source of FtsZ for cell division? (3) Is the divergent Ct linker of FtsZ an intrinsically disordered peptide (IDP)?
One model of the Z ring proposes that pfs associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of E. coli FtsZ by inserting either small peptides or whole FPs. Of the four lateral surfaces on FtsZ pfs, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174 located on the left and right surfaces, completely blocked function, and were identified as possible sites for essential lateral interactions. Another goal was to find a location within FtsZ that supported fusion of FP reporter proteins, while allowing the FtsZ-FP to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by super-resolution techniques.
The Ct linker is the most divergent region of FtsZ in both sequence and length. In E. coli FtsZ the Ct linker is 50 amino acids (aa), but for other FtsZ it can be as short as 37 aa or as long as 250 aa. The Ct linker has been hypothesized to be an IDP. In the present study, circular dichroism confirmed that isolated Ct linkers of E. coli (50 aa) and C. crescentus (175 aa) are IDPs. Limited trypsin proteolysis followed by mass spectrometry (LC-MS/MS) confirmed Ct linkers of E. coli (50 aa) and B. subtilis (47 aa) as IDPs even when still attached to the globular domain. In addition, we made chimeras, swapping the E. coli Ct linker for other peptides and proteins. Most chimeras allowed for normal cell division in E. coli, suggesting that IDPs with a length of 43 to 95 aa are tolerated, sequence has little importance, and electrostatic charge is unimportant. Several chimeras were purified to confirm the effect they had on pf assembly. We concluded that the Ct linker functions as a flexible tether allowing for force to be transferred from the FtsZ pf to the membrane to constrict the septum for division.
Resumo:
Electrostatic interactions are of fundamental importance in determining the structure and stability of macromolecules. For example, charge-charge interactions modulate the folding and binding of proteins and influence protein solubility. Electrostatic interactions are highly variable and can be both favorable and unfavorable. The ability to quantify these interactions is challenging but vital to understanding the detailed balance and major roles that they have in different proteins and biological processes. Measuring pKa values of ionizable groups provides a sensitive method for experimentally probing the electrostatic properties of a protein.
pKa values report the free energy of site-specific proton binding and provide a direct means of studying protein folding and pH-dependent stability. Using a combination of NMR, circular dichroism, and fluorescence spectroscopy along with singular value decomposition, we investigated the contributions of electrostatic interactions to the thermodynamic stability and folding of the protein subunit of Bacillus subtilis ribonuclease P, P protein. Taken together, the results suggest that unfavorable electrostatics alone do not account for the fact that P protein is intrinsically unfolded in the absence of ligand because the pKa differences observed between the folded and unfolded state are small. Presumably, multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.
Resumo:
In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.