546 resultados para Chips


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research studies the sintering of ferritic steel chips from the machining process. Were sintered metal powder obtained from machining process chips for face milling of a ferritic steel. The chip was produced by machining and characterized by SEM and EDS, and underwent a process of high energy mill powder characterized also by SEM and EDS. Were constructed three types of matrixes for uniaxial compression (relation l / d greater than 2.5). The differences in the design of the matrixes were essentially in the direction of load application, which for cylindrical case axial direction, while for the rectangular arrays, the longer side. Two samples were compressed with different geometries, a cylindrical and rectangular with the same compaction pressure of 700 MPa. The samples were sintered in a vacuum resistive furnace, heating rate 20 °C / min., isotherm 1300 °C for 60 minutes, and cooling rate of 25 °C / min to room temperature. The starting material of the rectangular sample was further annealed up to temperature of 800 ° C for 30 min. Sintered samples were characterized by scanning electron microscopy, optical microscopy and EDS. The sample compressed in the cylindrical matrix did not show a regular density reflecting in the sintered microstructure revealed by the irregular geometry of the pores, characterizing that the sintering was not complete, reaching only the second phase. As for the specimen compacted in the rectangular array, the analysis performed by scanning electron microscopy, optical microscopy and EDS indicate a good densification, and homogeneous microstructure in their full extent. Additionally, the EDS analyzes indicate no significant changes in chemical composition in the process steps. Therefore, it is concluded that recycling of chips, from the processed ferritic steel is feasible by the powder metallurgy. It makes possible rationalize raw material and energy by manufacture of known properties components from chips generated by the machining process, being benefits to the environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.

The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.

The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).

The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.

The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.

In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Energias Renováveis e Gestão de Energia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Arqueologia, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O estudo objetivou avaliar uma mistura multipla composta de feno de folhas de leucena (Leucaena leucocephala (Lam.) de Wit.), raspa de mandioca e uma mistura mineral, como suplemento para novilhos azebuados, no periodo seco. A mistura foi comparada com duas outras alternativas de suplementacao: a mistura sal-ureia e a silagem de leucena. Os animais dos tres grupos pastejaram, conjuntamente, em capim buffel (Cenchrus ciliaris, L.). Ao final dos 84 dias do periodo experimental, o incremento em peso vivo nos animais submetidos a mistura multipla (22,1 kg/cab) nao diferiu (P>0,05) do observado nos animais suplementados com silagem de leucena (17,7 kg/cab), mas correspondeu (P<0,05) a quase cinco vezes o observado nos animais submetidos a mistura sal-ureia (4,6 kg/cab).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 'taste of food' plays an important role in food choice. Furthermore, foods high in fat, sugar and salt are highly palatable and associated with increased food consumption. Research exploring taste importance on dietary choice, behaviour and intake is limited, particularly in young adults. Therefore, in this study a total of 1306 Australian university students completed questionnaires assessing dietary behaviors (such as how important taste was on food choice) and frequency of food consumption over the prior month. Diet quality was also assessed using a dietary guideline index. Participants had a mean age of 20 ± 5 years, Body Mass Index (BMI) of 22 ± 3 kg/m(2), 79% were female and 84% Australian. Taste was rated as being a very or extremely important factor for food choice by 82% of participants. Participants who rated taste as highly important, had a poorer diet quality (p = 0.001) and were more likely to consume less fruit (p = 0.03) and vegetables (p = 0.05). Furthermore, they were significantly more likely to consume foods high in fat, sugar and salt, including chocolate and confectionary, cakes and puddings, sweet pastries, biscuits, meat pies, pizza, hot chips, potato chips, takeaway meals, soft drink, cordial and fruit juice (p = 0.001-0.02). They were also more likely to consider avoiding adding salt to cooking (p = 0.02) and adding sugar to tea or coffee (p = 0.01) as less important for health. These findings suggest that the importance individuals place on taste plays an important role in influencing food choice, dietary behaviors and intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Machining of titanium is quite difficult and expensive. Heat generated in the process of cutting does not dissipate quickly, which affects tool life. In the last decade ultra fine grained (UFG) titanium has emerged as an option for substitution for more expensive titanium alloys. Extreme grain refinement can be readily performed by severe plastic deformation techniques. Grain refinement of a material achieved in this way was shown to change its mechanical and physical properties. In the present study, the microstructure evolution and the shear band formation in chips of coarse grained and UFG titanium machined to three different depths and three different feeding rates was investigated. A change in thermal characteristics of commercial purity Ti with grain refinement was studied by comparing heating/cooling measurements with an analytical solution of the heat transfer boundary problem. It was demonstrated that an improvement in the machinability can be expected for UFG titanium. © 2012 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Densification of metallic powders by means of extrusion is regarded as a very attractive processing technique that allows obtaining a high level of relative density of the compact. However, the uniformity of the relative density depends on that of strain distribution and on the processing parameters. Several variants of extrusion can be used for compaction of metal particulates, including the conventional extrusion (CE) and equal channel angular pressing (ECAP), often referred to as equal-channel angular extrusion. Each of these processes has certain advantages and drawbacks with respect to compaction. A comparative study of these two extrusion processes influencing the relative density of compacts has been conducted by numerical simulation using commercial finite element software DEFORM2D. The results have been validated by experiments with titanium and magnesium powders and chips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To characterise clusters of individuals based on adherence to dietary recommendations and to determine whether changes in Healthy Eating Index (HEI) scores in response to a personalised nutrition (PN) intervention varied between clusters.

DESIGN: Food4Me study participants were clustered according to whether their baseline dietary intakes met European dietary recommendations. Changes in HEI scores between baseline and month 6 were compared between clusters and stratified by whether individuals received generalised or PN advice.

SETTING: Pan-European, Internet-based, 6-month randomised controlled trial.

SUBJECTS: Adults aged 18-79 years (n 1480).

RESULTS: Individuals in cluster 1 (C1) met all recommended intakes except for red meat, those in cluster 2 (C2) met two recommendations, and those in cluster 3 (C3) and cluster 4 (C4) met one recommendation each. C1 had higher intakes of white fish, beans and lentils and low-fat dairy products and lower percentage energy intake from SFA (P<0·05). C2 consumed less chips and pizza and fried foods than C3 and C4 (P<0·05). C1 were lighter, had lower BMI and waist circumference than C3 and were more physically active than C4 (P<0·05). More individuals in C4 were smokers and wanted to lose weight than in C1 (P<0·05). Individuals who received PN advice in C4 reported greater improvements in HEI compared with C3 and C1 (P<0·05).

CONCLUSIONS: The cluster where the fewest recommendations were met (C4) reported greater improvements in HEI following a 6-month trial of PN whereas there was no difference between clusters for those randomised to the Control, non-personalised dietary intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyzing large-scale gene expression data is a labor-intensive and time-consuming process. To make data analysis easier, we developed a set of pipelines for rapid processing and analysis poplar gene expression data for knowledge discovery. Of all pipelines developed, differentially expressed genes (DEGs) pipeline is the one designed to identify biologically important genes that are differentially expressed in one of multiple time points for conditions. Pathway analysis pipeline was designed to identify the differentially expression metabolic pathways. Protein domain enrichment pipeline can identify the enriched protein domains present in the DEGs. Finally, Gene Ontology (GO) enrichment analysis pipeline was developed to identify the enriched GO terms in the DEGs. Our pipeline tools can analyze both microarray gene data and high-throughput gene data. These two types of data are obtained by two different technologies. A microarray technology is to measure gene expression levels via microarray chips, a collection of microscopic DNA spots attached to a solid (glass) surface, whereas high throughput sequencing, also called as the next-generation sequencing, is a new technology to measure gene expression levels by directly sequencing mRNAs, and obtaining each mRNA’s copy numbers in cells or tissues. We also developed a web portal (http://sys.bio.mtu.edu/) to make all pipelines available to public to facilitate users to analyze their gene expression data. In addition to the analyses mentioned above, it can also perform GO hierarchy analysis, i.e. construct GO trees using a list of GO terms as an input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of electronic waste plastics were used in this investigation: acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS). This research investigation utilized two approaches for incorporating electronic waste plastics into asphalt pavement materials. The first approach was blending and integrating recycled and processed electronic waste powders directly into asphalt mixtures and binders; and the second approach was to chemically treat recycled and processed electronic waste powders with hydro-peroxide before blending into asphalt mixtures and binders. The chemical treatment of electronic waste (e-waste) powders was intended to strengthen molecular bonding between e-waste plastics and asphalt binders for improved low and high temperature performance. Superpave asphalt binder and mixture testing techniques were conducted to determine the rheological and mechanical performance of the e-waste modified asphalt binders and mixtures. This investigation included a limited emissions-performance assessment to compare electronic waste modified asphalt pavement mixture emissions using SimaPro and performance using MEPDG software. Carbon dioxide emissions for e-waste modified pavement mixtures were compared with conventional asphalt pavement mixtures using SimaPro. MEPDG analysis was used to determine rutting potential between the various e-waste modified pavement mixtures and the control asphalt mixture. The results from this investigation showed the following: treating the electronic waste plastics delayed the onset of tertiary flow for electronic waste mixtures, electronic waste mixtures showed some improvement in dynamic modulus results at low temperatures versus the control mixture, and tensile strength ratio values for treated e-waste asphalt mixtures were improved versus the control mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils are the largest sinks of carbon in terrestrial ecosystems. Soil organic carbon is important for ecosystem balance as it supplies plants with nutrients, maintains soil structure, and helps control the exchange of CO2 with the atmosphere. The processes in which wood carbon is stabilized and destabilized in forest soils is still not understood completely. This study attempts to measure early wood decomposition by different fungal communities (inoculation with pure colonies of brown or white rot, or the original microbial community) under various interacting treatments: wood quality (wood from +CO2, +CO2+O3, or ambient atmosphere Aspen-FACE treatments from Rhinelander, WI), temperature (ambient or warmed), soil texture (loamy or sandy textured soil), and wood location (plot surface or buried 15cm below surface). Control plots with no wood chips added were also monitored throughout the study. By using isotopically-labelled wood chips from the Aspen-FACE experiment, we are able to track wood-derived carbon losses as soil CO2 efflux and as leached dissolved organic carbon (DOC). We analyzed soil water for chemical characteristics such as, total phenolics, SUVA254, humification, and molecular size. Wood chip samples were also analyzed for their proportion of lignin:carbohydrates using FTIR analysis at three time intervals throughout 12 months of decomposition. After two years of measurements, the average total soil CO2 efflux rates were significantly different depending on wood location, temperature, and wood quality. The wood-derived portion soil CO2 efflux also varied significantly by wood location, temperature, and wood quality. The average total DOC and the wood-derived portion of DOC differed between inoculation treatments, wood location, and temperature. Soil water chemical characteristics varied significantly by inoculation treatments, temperature, and wood quality. After 12 months of decomposition the proportion of lignin:carbohydrates varied significantly by inoculation treatment, with white rot having the only average proportional decrease in lignin:carbohydrates. Both soil CO2 efflux and DOC losses indicate that wood location is important. Carbon losses were greater from surface wood chips compared with buried wood chips, implying the importance of buried wood for total ecosystem carbon stabilization. Treatments associated with climate change also had an effect on the level of decomposition. DOC losses, soil water characteristics, and FTIR data demonstrate the importance of fungal community on the degree of decomposition and the resulting byproducts found throughout the soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultrymanure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.