977 resultados para Carnival plays.
Resumo:
Nitric oxide (NO) plays a key role in body temperature (Tb) regulation of mammals, acting on the brain to stimulate heat loss. Regarding birds, the putative participation of NO in the maintenance of Tb in thermoneutrality or during heat stress and the site of its action (periphery or brain) is unknown. Thus, we tested if NO participates in the maintenance of chicks` Tb in those conditions. We investigated the effect of intramuscular (im; 25, 50, 100 mg/kg) or intracerebroventricular (icv; 22.5, 45, 90, 180 mu g/animal) injections of the non selective NO synthase inhibitor L-NAME on Tb of 5-day-old chicks at thermoneutral zone (TNZ; 31-32 degrees C) and under heat stress (37 degrees C for 5-6 h). We also verified plasma and diencephalic nitrite/nitrate levels in non-injected chicks under both conditions. At TNZ, 100 mg/kg (im) or 45,90,180 mu g (icv) of L-NAME decreased Tb. A significant correlation between Tb and diencephalic, but not plasma, nitrite/nitrate levels was observed. Heat stress-induced hyperthermia was inhibited by all tested doses of L-NAME (im and icv). Tb was correlated neither with plasma nor with diencephalic nitrite/nitrate levels during heat stress. These results indicate the involvement of brain NO in the maintenance of Tb of chicks, an opposite action of that observed in mammals, and may modulate hyperthermia. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A general transition criterion is proposed in order to locate the core-annular flow pattern in horizontal and vertical oil-water flows. It is based on a rigorous one-dimensional two-fluid model of liquid-liquid two-phase flow and considers the existence of critical interfacial wave numbers related to a non-negligible interfacial tension term to which the linear stability theory still applies. The viscous laminar-laminar flow problem is fully resolved and turbulence effects on the stability are analyzed through experimentally obtained shape factors. The proposed general transition criterion includes in its formulation the inviscid Kelvin-Helmholtz`s discriminator. If a theoretical maximum wavelength is considered as a necessary condition for stability, a stability criterion in terms of the Eotvos number is achieved. Effects of interfacial tension, viscosity ratio, density difference, and shape factors on the stability of core-annular flow are analyzed in detail. The more complete modeling allowed for the analysis of the neutral-stability wave number and the results strongly suggest that the interfacial tension term plays an indispensable role in the correct prediction of the stable region of core-annular flow pattern. The incorporation of a theoretical minimum wavelength into the transition model produced significantly better results. The criterion predictions were compared with recent data from the literature and the agreement is encouraging. (C) 2007 American Institute of Chemical Engineers.
Resumo:
The area above the nasal cavity plays a role in respiratory physiology. Aim: To analyze, during a period of growth, a possible change in the minimum cross sectional area (MCA) and nasal volume of the anterior nasal cavity. Materials and Methods: We evaluated 29 children (14 boys and 15 girls) with a mean age of 7.81 years at first examination (M1) and 11.27 years in the second examination (M2), without symptoms of nasal obstruction. The interval between examinations was 36-48 months. Children were subjected to the examination of acoustic rhinometry in which we recorded the minimum cross-sectional areas, volumes and their correlations with gender. Study design: Cohort. Results: The mean cross-sectional area of the nasal cavity of MCA for girls was 0.30 +/- 0.09 cm2 (M1) and 0.30 +/- 0.14 cm2 (M2), while for boys was 0.24 +/- 0.12 cm2 (M1) and 0.32 +/- 0.10 cm2 (M2). The mean values of the total volumes found for the whole sample were 2.17 +/- 0.23 cm3 (MCA1-M1), 2.56 +/- 0.27 cm3 (MCA1-M2), 4.24 +/- 1.17 cm3 (MCA2-M2) and 4.63 +/- 1.10 cm3 (MCA2-M2). Conclusion: There was no significant change in the minimum cross sectional area of the anterior nasal cavity. There was no significant difference between genders for both MCA and for the volume. There was a significant increase in MCA1.
Resumo:
The arteriovenous fistula (AVF) is characterized by enhanced blood flow and is the most widely used vascular access for chronic haemodialysis (Sivanesan et al., 1998). A large proportion of the AVF late failures are related to local haemodynamics (Sivanesan et al., 1999a). As in AVF, blood flow dynamics plays an important role in growth, rupture, and surgical treatment of aneurysm. Several techniques have been used to study the flow patterns in simplified models of vascular anastomose and aneurysm. In the present investigation, Computational Fluid Dynamics (CFD) is used to analyze the flow patterns in AVF and aneurysm through the velocity waveform obtained from experimental surgeries in dogs (Galego et al., 2000), as well as intra-operative blood flow recordings of patients with radiocephalic AVF ( Sivanesan et al., 1999b) and physiological pulses (Aires, 1991), respectively. The flow patterns in AVF for dog and patient surgeries data are qualitatively similar. Perturbation, recirculation and separation zones appeared during cardiac cycle, and these were intensified in the diastole phase for the AVF and aneurysm models. The values of wall shear stress presented in this investigation of AVF and aneurysm models oscillated in the range that can both cause damage to endothelial cells and develop atherosclerosis.
Resumo:
Micro-tools offer significant promise in a wide range of applications Such as cell Manipulation, microsurgery, and micro/nanotechnology processes. Such special micro-tools consist of multi-flexible structures actuated by two or more piezoceramic devices that must generate output displacements and forces lit different specified points of the domain and at different directions. The micro-tool Structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics Output displacements. The design of these micro-tools involves minimization of the coupling among movements generated by various piezoceramics. To obtain enhanced micro-tool performance, the concept of multifunctional and functionally graded materials is extended by, tailoring elastic and piezoelectric properties Of the piezoceramics while simultaneously optimizing the multi-flexible structural configuration using multiphysics topology optimization. The design process considers the influence of piezoceramic property gradation and also its polarization sign. The method is implemented considering continuum material distribution with special interpolation of fictitious densities in the design domain. As examples, designs of a single piezoactuator, an XY nano-positioner actuated by two graded piezoceramics, and a micro-gripper actuated by three graded piezoceramics are considered. The results show that material gradation plays an important role to improve actuator performance, which may also lead to optimal displacements and coupling ratios with reduced amount of piezoelectric material. The present examples are limited to two-dimensional models because many of the applications for Such micro-tools are planar devices. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO(2) nanoparticles plays an important role in the system`s energetics and stability. Using Xray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO(2) with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO(2) nanoparticles stability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test-based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers` field in the municipality of Lagoa da Confusao, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha-1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha-1 was obtained with 57 mg K kg-1 soil in the first year and with 30 mg K kg-1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield.
Resumo:
Aims: Geographical indication plays an important role in the improvement of wine quality. In this context, the search for new grape growing areas has been constant. The Sao Francisco River Valley in the cerrado of Minas Gerais State (Brazil) has been pointed out in the Geoviticulture Multicriteria Climatic Classification System (MCC System) as a potentially winegrowing region, especially considering the autumn-winter period when night temperatures are favorable to grape ripening. In this work, we studied the maturation curves and fruit composition of four wine grape varieties (Syrah, Merlot, Cabernet-Sauvignon and Cabernet Franc) in two growing seasons in order to validate the state of Minas Gerais as a new winegrowing region in Brazil. Methods and results: Quality parameters (berry weight, pH, titratable acidity and total soluble solids) were measured weekly from veraison to harvest, and sugar, organic acid, anthocyanin and phenolic concentrations were determined in must and berry skins and seeds at harvest. Syrah berries showed the highest weight throughout maturation which contributed to higher yield (8.92 ton ha(-1)), followed closely by Merlot (8.07 ton ha(-1)). Bern, sugar concentrations were higher and malic acid levels were lower than the values usually observed in wine grapes harvested during summer in traditional winegrowing regions in Brazil. Cabernet Franc showed lower levels of anthocyanins and skin phenolics per kg berries and the highest values of seed phenolics, which were not affected by growing season. Conclusion: Weather conditions of the cerrado of Minas Gerais State in Brazil during winter allowed complete maturation of Cabernet-Sauvignon, Cabernet Franc, Merlot and Syrah cultivars as revealed by the satisfactory sugar, anthocyanin and skin phenolic accumulation. Significance and impact of the study: This study revealed the potential of the cerrado ecoregion in the northeast of Minas Gerais to become a new winemaking region in Brazil.
Resumo:
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-inserisitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: Oxidative modification of low-density lipoprotein (LDL) has been demonstrated in patients with end-stage renal disease, where it is associated with oxidative stress and plays a key role in the pathogenesis of atherosclerosis. In this context, the generation of minimally oxidized LDL, also called electronegative LDL [ LDL(-)], has been associated with active disease, and is a detectable sign of atherogenic tendencies. The purpose of this study was to evaluate serum LDL(-) levels and anti-LDL(-)IgG autoantibodies in end-stage renal disease patients on dialysis, comparing patients on hemodialysis (HD), peritoneal dialysis (PD) and a control group. In addition, the serum lipid profile, nutritional status, biochemical data and parameters of mineral metabolism were also evaluated. Methods: The serum levels of LDL(-) and anti-LDL(-) IgG autoantibodies were measured in 25 patients undergoing HD and 11 patients undergoing PD at the Centro Integradode Nefrologia, Rio de Janeiro, Brazil. Ten healthy subjects served as a control group. Serum levels of albumin, total cholesterol, triglycerides and lipoproteins were measured. Calculations of subjects` body mass index and measurements of waist circumference, triceps skin fold and arm muscle area were performed. Measurements of hematocrit, serum blood urea nitrogen, creatinine, parathyroid hormone, phosphorus and calcium were taken. Results: Levels of LDL(-) were higher in HD patients (575.6 +/- 233.1 mu g/ml) as compared to PD patients (223.4 +/- 117.5 mu g/ml, p < 0.05), which in turn were higher than in the control group (54.9 +/- 33.3 mu g/ml, p < 0.01). The anti-LDL(-) IgG autoantibodies were increased in controls (0.36 +/- 0.09 mu g/ ml) as compared to PD (0.28 +/- 0.12 mu g/ml, p < 0.001) and HD patients (0.2 +/- 0.1 mu g/ml, p < 0.001). The mean values of total cholesterol and LDL were considered high in the PD group, whereas the mean triceps skin fold was significantly lower in the HD group. Conclusion: Levels of LDL(-) are higher in renal patients on dialysis than in normal individuals, and are reciprocally related to IgG autoantibodies. LDL(-) may be a useful marker of oxidative stress, and this study suggests that HD patients are more susceptible to cardiovascular risk due to this condition. Moreover, autoantibodies reactive to LDL(-) may have protective effects in chronic kidney disease. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Increased expression/activity of matrix metalloproteinases (MMPs), especially MMP-2, plays a role in the vascular alterations induced by hypertension, and increased oxidative stress is a major factor activating MMPs. Here, we hypothesized that lercanidipine, a calcium channel blocker, could attenuate the increases in oxidative stress and MMP-2 expression/activity in the two-kidney, one-clip (2K-1C) hypertensive rats. Sham-operated or 2K-1C hypertension rats were treated with lercanidipine 2.5 mg/kg/day (or vehicle) starting three weeks after hypertension was induced. Systolic blood pressure was monitored weekly. After five weeks of treatment, aortic rings were isolated to assess endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes in the aortic wall were studied in hematoxylin/eosin sections. Aortic MMP-2 levels were determined by gelatin zymography. Aortic MMP-2/tissue inhibitor of metalloproteinases (TIMP)-2 mRNA levels were determined by quantitative real-time RT-PCR. Plasma thiobarbituric acid reactive substances concentrations were determined using a fluorometric method. Lercanidipine attenuated 2K-1C hypertension (224 12 versus 183 11 mm Hg in 2K-1C rats and 2K-1C + Lercandipine rats, respectively; P < 0.01) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Increased MMP-2 and Pro-MMP-2 levels were found in the aortas of 2K-1C rats (all P < 0.05). Lercandipine attenuated 2K-1C-induced increases in MMP-2 by more than 60% and blunted 2K-1C-induced increases in oxidative stress (both P < 0.001). While hypertension-induced significant aortic wall hypertrophy and approximately 9-fold increases in the ratio of MMP-2MMP-2 mRNA expression (both P < 0.05), lercandipine did not affect these changes. These results suggest that lercanidipine produces antihypertensive effects and reverses the endothelial dysfunction associated with 2K-1C hypertension, probably through mechanisms involving antioxidant effects leading to lower MMP-2 activation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide (NO) plays an important role in the control of the vascular tone and the most often employed NO donors have limitations due to their harmful side-effects. In this context, new NO donors have been prepared, in order to minimize such undesirable effects. cis-[Ru(bpy)(2)(py)NO(2)](PF(6)) (RuBPY) is a new nitrite complex synthesized in our laboratory that releases NO in the presence of the vascular tissue only. In this work the vasorelaxation induced by this NO donor has been studied and compared to that obtained with the well known NO donor SNP. The relaxation induced by RuBPY is concentration-dependent in denuded rat aortas pre-contracted with phenylephrine (EC(50)). This new compound induced relaxation with efficacy similar to that of SNP, although its potency is lower. The time elapsed until maximum relaxation is achieved (E(max) = 240 s) is similar to measured for SNP (210 s). Vascular reactivity experiments demonstrated that aortic relaxation by RuBPY is inhibited by the soluble guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiozolo[4,3-a]quinoxaline-1-one (ODQ 1 mu M). In a similar way, 1 mu M ODQ also reduces NO release from the complex as measured with DAF-2 DA by confocal microscopy. These findings suggest that this new complex RuBPY that has nitrite in its structure releases NO inside the vascular smooth muscle cell. This ruthenium complex releases significant amounts of NO only in the presence of the aortic tissue. Reduction of nitrite to NO is most probably dependent on the soluble guanylyl-cyclase enzyme, since NO release is inhibited by ODQ. (C) 2011 Elsevier Inc. All rights reserved.
Fluorescent indication that nitric oxide formation in NTS neurons is modulated by glutamate and GABA
Resumo:
Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM L-NAME (a non-selective NOS inhibitor), 1 MM D-NAME (an inactive enantiomere of L-NAME), 1 mM kynurenic acid (a nonselective ionotropic receptors antagonist) or 20 mu M bicuculline (a selective GABA(A) receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU: caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, D-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by L-glutamate and GABA. (C) 2009 Elsevier Inc. All rights reserved.