941 resultados para Carbonyl compound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a female who is compound heterozygote for two new point mutations in the CYP19 gene. The allele inherited from her mother presented a base pair deletion (C) occurring at P408 (CCC, exon 9), causing a frameshift that results in a nonsense codon 111 bp (37 aa) further down in the CYP19 gene. The allele inherited from her father showed a point mutation from G-->A at the splicing point (canonical GT to mutational AT) between exon and intron 3. This mutation ignores the splice site and a stop codon 3 bp downstream occurs. Aromatase deficiency was already suspected because of the marked virilization occurring prepartum in the mother, and the diagnosis was confirmed shortly after birth. Extremely low levels of serum estrogens were found in contrast to high levels of androgens. Ultrasonographic follow-up studies revealed persistently enlarged ovaries (19.5-22 mL) during early childhood (2 to 4 yr) which contained numerous large cysts up to 4.8 x 3.7 cm and normal-appearing large tertiary follicles already at the age of 2 yr. In addition, both basal and GnRH-induced FSH levels remained consistently strikingly elevated. Low-dose estradiol (E2) (0.4 mg/day) given for 50 days at the age of 3 6/12 yr resulted in normalization of serum gonadotropin levels, regression of ovarian size, and increase of whole body and lumbar spine (L1-L4) bone mineral density. The FSH concentration and ovarian size returned to pretreatment levels shortly (150 days) after cessation of E2 therapy. Therefore, we recommend that affected females be treated with low-dose E2 in amounts sufficient to result in physiological prepubertal E2 concentrations using an ultrasensitive estrogen assay. However, E2 replacement needs to be adjusted throughout childhood and puberty to ensure normal skeletal maturation and adequate adolescent growth spurt, normal accretion of bone mineral density, and, at the appropriate age, female secondary sex maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. METHODS: We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. RESULTS: The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. CONCLUSIONS: Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Functional characterization of mutations involving the SCN5A-encoded cardiac sodium channel has established the pathogenic mechanisms for type 3 long QT syndrome and type 1 Brugada syndrome and has provided key insights into the physiological importance of essential structure-function domains. OBJECTIVE This study sought to present the clinical and biophysical phenotypes discerned from compound heterozygosity mutations in SCN5A on different alleles in a toddler diagnosed with QT prolongation and fever-induced ventricular arrhythmias. METHODS A 22-month-old boy presented emergently with fever and refractory ventricular tachycardia. Despite restoration of sinus rhythm, the infant sustained profound neurological injury and died. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open-reading frame/splice mutational analysis of the 12 known long QT syndrome susceptibility genes was performed. RESULTS The infant had 2 SCN5A mutations: a maternally inherited N-terminal frame shift/deletion (R34fs/60) and a paternally inherited missense mutation, R1195H. The mutations were engineered by site-directed mutagenesis and heterologously expressed transiently in HEK293 cells. As expected, the frame-shifted and prematurely truncated peptide, SCN5A-R34fs/60, showed no current. SCN5A-R1195H had normal peak and late current but abnormal voltage-dependent gating parameters. Surprisingly, co-expression of SCN5A-R34fs/60 with SCN5A-R1195H elicited a significant increase in late sodium current, whereas co-expression of SCN5A-WT with SCN5A-R34fs/60 did not. CONCLUSIONS A severe clinical phenotype characterized by fever-induced monomorphic ventricular tachycardia and QT interval prolongation emerged in a toddler with compound heterozygosity involving SCN5A: R34fs/60, and R1195H. Unexpectedly, the 94-amino-acid fusion peptide derived from the R34fs/60 mutation accentuated the late sodium current of R1195H-containing Na(V)1.5 channels in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tandem mass spectral database system consists of a library of reference spectra and a search program. State-of-the-art search programs show a high tolerance for variability in compound-specific fragmentation patterns produced by collision-induced decomposition and enable sensitive and specific 'identity search'. In this communication, performance characteristics of two search algorithms combined with the 'Wiley Registry of Tandem Mass Spectral Data, MSforID' (Wiley Registry MSMS, John Wiley and Sons, Hoboken, NJ, USA) were evaluated. The search algorithms tested were the MSMS search algorithm implemented in the NIST MS Search program 2.0g (NIST, Gaithersburg, MD, USA) and the MSforID algorithm (John Wiley and Sons, Hoboken, NJ, USA). Sample spectra were acquired on different instruments and, thus, covered a broad range of possible experimental conditions or were generated in silico. For each algorithm, more than 30,000 matches were performed. Statistical evaluation of the library search results revealed that principally both search algorithms can be combined with the Wiley Registry MSMS to create a reliable identification tool. It appears, however, that a higher degree of spectral similarity is necessary to obtain a correct match with the NIST MS Search program. This characteristic of the NIST MS Search program has a positive effect on specificity as it helps to avoid false positive matches (type I errors), but reduces sensitivity. Thus, particularly with sample spectra acquired on instruments differing in their Setup from tandem-in-space type fragmentation, a comparably higher number of false negative matches (type II errors) were observed by searching the Wiley Registry MSMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upshaw-Schulman syndrome (USS) is due to severe congenital deficiency of von Willebrand factor (VWF)-cleaving protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 domains, nr 13) activity resulting in the presence of unusually large forms of VWF in the circulation, causing intravascular platelet clumping and thrombotic microangiopathy. Our patient, a 26-year-old man, had attacks of thrombotic thrombocytopenic purpura (TTP) with thrombocytopenia and a urine dipstick positive for hemoglobin (4+), often as the only sign of hemolytic activity. He had ADAMTS13 activity of <1% of normal plasma without the presence of inhibitors of ADAMTS13. ADAMTS13 deficiency was caused by two new mutations of the ADAMTS13 gene: a deletion of a single nucleotide in exon17 (c. 2042 delA) leading to a frameshift (K681C fs X16), and a missense mutation in exon 25 (c.3368G>A) leading to p.R1123H. This case report confirms the importance of the analysis of the ADAMTS13 activity and its inhibitor in patients who have episodes of TTP, with a very low platelet count and sometimes without the classic biochemical signs of hemolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to investigate the protective effect of the heart-protecting musk pill (HMP) on inflammatory injury of kidney from spontaneously hypertensive rat (SHR). Male SHRs aged 4 weeks were divided into SHR model group, HMP low-dosage group (13.5 mg/kg), and HMP high-dosage group (40 mg/kg). Age-matched Wistar-Kyoto rats were used as normal control. All rats were killed at 12 weeks of age. Tail-cuff method and enzyme-linked immunosorbent assay were used to determine rat systolic blood pressure and angiotensin II (Ang II) contents, respectively. Renal inflammatory damage was evaluated by the following parameters: protein expressions of inflammatory cytokines, carbonyl protein contents, nitrite concentration, infiltration of monocytes/macrophages in interstitium and glomeruli, kidney pathological changes, and excretion rate of urinary protein. HMP did not prevent the development of hypertension in SHR. However, this Chinese medicinal compound decreased renal Ang II content. Consistent with the change of renal Ang II, all the parameters of renal inflammatory injury were significantly decreased by HMP. This study indicates that HMP is a potent suppressor of renal inflammatory damage in SHR, which may serve as a basis for the advanced preventive and therapeutic investigation of HMP in hypertensive nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑ hydroxyl + carboxyl-OPAHs, Σnitro-PAHs and Σalkyl + parent-PAHs ranged between 5–22, 0.2–13, 0.3–7, and 7–387 ng m− 3, respectively, being markedly higher than in most western cities. This represented a range of 0.01–0.4% and 0.002–0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures.