1000 resultados para Carbonate sediments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotopic compositions of uranium (234U and 238U) and thorium (230Th and 232Th) were measured in metalliferous sediments from the western flank of the East Pacific Rise at 21°-22°S, in the area of hydrothermal activity and massive sulfide accumulation at the axis of the EPR. Concentration of 232Th (on the carbonate-free base) is consistent with composition of mafic extrusive rocks; isotope ratios 232Th/238U and 234U/238U indicate that about 70% of uranium passes into sediments from sea water with hydrothermal iron hydroxide. Mean sedimentation rates are calculated for seven cores by the nonequilibrium 230Th method with use of the constant concentration model. Flux of 230Th to bottom sediments is calculated and its mean value is used to determine sedimentation rate in four other cores. The constant flux model is used to calculate change of sedimentation rate with depth for seven cores over time interval of 100-300 ky. Sedimentation rates varied not much (0.3-0.6 cm/ky). The greatest changes occurred in two cores: one located near massive sulfide structures, and another near the spreading axis. Determinations of mean rates by the radiocarbon method and the nonequilibrium thorium method are in good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation of recent bottom sediments between the Cyprus Island and the Syrian seacoast during Cruise 27 of R/V Vityaz-2 (1993) gave comprehensive field data significantly complementing our understanding of the sedimentation process in this part of the Mediterranean Sea. Mineralogical and geochemical indicators testify to different input into sedimentation of the Syrian and Nile River sources. The Nile River plays a leading role in terrigenous sedimentation in the southeastern Mediterranean Sea, especially in deep-sea areas. In contrast, contribution of weathering products of basalts and ophiolites from the Syrian drainage area (hornblende, monoclinic and rhombic pyroxenes, olivine, spinel, palagonite, and epidote) are particularly detectable in sediments of the near-coast zone. During Late Quaternary contribution of terrigenous material both from the Syrian and Nile sources was irregular in time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed geochemical investigations of bottom sediments in the Pechora Bay were carried out under a monitoring regime. The regional geochemical background is characterized. Organic matter of sediments is found to be clastic, formed under the influence of Pechora River run-off, and determined by genetic and lithofacial factors. An application of geochemical methodology is suggested for estimating hydrocarbon contamination of bottom sediments. As an example consequences of the accidental Usinsky oil spill are studied. They are based on analysis of composition of molecular markers. It is shown that increasing technogenic impact on Pechora Bay sediments is fixed only at molecular level and is not disastrous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a delta18O increase of 1.45? in Globigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in 18O in both planktic and benthic forms (about 1.0? and 0.5?, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallow Globigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediate Globigerina venezuelana; and deep Catapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in 18O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using gas chromatography technique we examined molecular composition of n-alkanes and lignin from bottom sediments of a core 385 cm long collected in the region of the Blake-Bahama Abyssal Plain. We determined C_org concentrations and lignin composition in soils, mangrove roots and leaves, in algae Sargassum and Ascophyllum, in corals and timber of a sunken ship; they were compared with data on lignin in bottom sediments. Mixed planktonogenic and terrigenous origin of organic matter in the core was proved with different proportions of terrigenous and planktonogenic components at different levels. Multiple changes in dominating sources of organic matter over a period required for accumulation of a four meter thick sedimentary sequence (about 4 m) are shown as obtained from changes in composition and contents of organic-chemical markers referring to classes of n-alkanes and phenols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium-isotope ratios (d44/42Ca) were measured in carbonate-rich sedimentary sections deposited during Oceanic Anoxic Events 1a (Early Aptian) and 2 (Cenomanian-Turonian). In sections from Resolution Guyot, Mid-Pacific Mountains; Coppitella, Italy; and the English Chalk at Eastbourne and South Ferriby, UK, a negative excursion in d44/42Ca of ~0.20 per mil and ~0.10 per mil is observed for the two events. These d44/42Ca excursions occur at the same stratigraphic level as the carbon-isotope excursions that define the events, but do not correlate with evidence for carbonate dissolution or lithological changes. Diagenetic and temperature effects on the calcium-isotope ratios can be discounted, leaving changes in global seawater composition as the most probable explanation for d44/42Ca changes in four different carbonate sections. An oceanic box model with coupled strontium- and calcium-isotope systems indicates that a global weathering increase is likely to be the dominant driver of transient excursions in calcium-isotope ratios. The model suggests that contributions from hydrothermal activity and carbonate dissolution are too small and short-lived to affect the oceanic calcium reservoir measurably. A modelled increase in weathering flux, on the order of three times the modern flux, combined with increased hydrothermal activity due to formation of the Ontong-Java Plateau (OAE1a) and Caribbean Plateau (OAE2), can produce trends in both calcium and strontium isotopes that match the signals recorded in the carbonate sections. This study presents the first major-element record of a weathering response to Oceanic Anoxic Events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty-nine surface samples from the Portuguese shelf, recovered offshore from the mouths of the Ave, Douro, Lis and Mira rivers, were analysed using ICP-OES for selected major and trace elements, after total dissolution. Organic carbon, carbonate content and grain size were also determined. Five evaluation tools have been applied in order to compare the three study areas and to evaluate sediment geochemistry and other sediment compositional variability in the acquired samples: (1) empirical methods based on comparison with standard reference criteria, e.g. the NOAA sediment quality guidelines, (2) normalisation ratios using a grain-size proxy element, (3) "Gradient Method", plotting contaminant vs. organic matter or Al, (4) definition of a regional geochemical baseline from a compiled database, and (5) enrichment factors. The evaluation of element and component associations indicates differences related both to the onshore drainage areas and to the environmental shelf setting. Despite the considerable variability in total metal contents indicated by our results, the sediment metal composition is largely of natural origin. Metal enrichments observed in the Mira area are associated with the drainage of mineralised areas rich in Cu, Pb, Zn, Fe and Mn. The near absence of human impact on shelf sediments, despite the vicinity to urban areas with high industrialisation levels, such as the Ave-Douro and Lis areas, is attributed to effective trapping in the estuaries and coastal zones, as well dilution with less contaminated sediments shelf sediments and removal with fine fractions due to grain-size sorting. The character of the contaminated sediments transported to these shelf areas is further influenced by grain-size sorting as well as by dilution with less contaminated marine sediments. The results obtained individually by the different methods complement each other and allow more specific interpretations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foraminifera shells from modern sediments document the hydrography of the coastal upwelling region off Northwest-Africa (12-35° N) through the stable isotopic composition of their shells. Oxygen isotopes in planktonic foraminifers reflect sea surface temperatures (SST) during the main growing season of the differnt species: Globigerinoides ruber (pink and white) and G. sacculifer delineate the temperatures of the summer, Globorotalia inflata and Pulleniatina obliquiloculata those of the winter. Oxygen isotopes on Globigerina bulloides document temperature ranges of the upwelling seasons. d18O values in planktonic foraminifera from plankton hauls resemble those from the surface sediment samples, if the time of the plankton collection is identical with that of the main growing season of the species. The combined isotopic record of G. ruber (white) and G. inflata clearly reveals the latitudinal variations of the annual mean SST. The deviation of the d18O values from both species from their common mean is a scale for the seasonality, i.e. the maximum temperature range within one year. Thus in the summer upwelling region (north of 25° N) seasonality is relatively low, while it becomes high in the winter upwelling region south of 20° N. Furthermore, the winter upwelling region is characterized by relatively high d18O values - indicating low temperatures - in G. bulloides, the region of summer upwelling by relatively low d180 values compared with the constructed annual mean SST. Generally, carbon isotopes from the plankton hauls coincide with those from sediment surface samples. The enrichment of 13C isotopes in foraminifers from areas with high primary production can be caused by the removal of 12C from the total dissolved inorganic carbon during phytoplankton blooms. It is found that carbon isotopes from plankton hauls off Northwest-Africa are relatively enriched in 13C compared with samples from the western Atlantic Ocean. Also shells of G. ruber (pink and white) from upwelling regions are enriched in the heavier isotope compared with regions without upwelling. In the sediment, the enrichement of 13C due to high primary production can only be seen in G. bulloides from the high fertile upwelling region south of 20° N. North of this latitude values are relatively low. An enrichment of 12C is observed in shells of G. ruber (pink), G. inflata and P. obliquiloculata from summer-winter- and perennial upwelling regions respectively. Northern water masses can be distinguished from their southern counterparts by relatively high oxygen and carbon values in the "living" (=stained) benthic foraminifera Uvigerina sp. and Hoeglundina elegans. A tongue of the Mediterranean Outflow water can be identified far to the south (20° N) by 13C-enriched shells of these benthic foraminifera. A zone of erosion (15-25° N, 300-600 m) with a subrecent sediment surface can be mapped with the help of oxygen isotopes in "dead" benthic specimens. Comparison of d18O values in aragonitic and calcitic benthic foraminifers does not show a differential influence of temperature on the isotopic composition in the carbonate. However, carbon isotopes reflect slightly differences under the influence of temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On "Meteor" cruise 30 (1973) 22 piston-cores were collected off Sierra Leone from water-depths between about 5000 m (Sierra Leone Basin) and 500 m (upper continental slope) with the objective to study the sediment composition and age as well as processes of sedimentation on the continental slope in a tropical humid region. Granulometric analysis and determinations of the carbonate contents of the sediment samples were carried out, as well as qualitative and quantitative analysis of the components of the grain size fractions > 63 µm and of the planktonic and benthonic foraminifera > 160 µm. Presently, the cold Canary Current influences the composition of the planktonic foraminifera within the northwestern area of investigation (profile A), whereas the planktonic fauna of the eastern area (profile C) seems to be truly tropical. In all Quaternary sediments from the continental slope off Sierra Leone, species of Globorotalia are less abundant than in truly pelagic sediments. For that reason, the zonation of the Pleistocene sediments based on the presence or absence of Globorotalia cultrata does not always agree with the climatic changes reflected in the sediments. Concerning past climates better results can be obtained by using the changes in percentage abundances of Globigerina sp. sp. and Globigerinoides sp. sp. as indicators for cool and warm temperatures. The Tertiary sediments contain a pelagic foraminiferal assemblage. In the Holocene sediments the benthonic foraminifera do not only serve as good paleodepth indicators, but their communities are also restricted to defined water masses, which change their positions in accordance with climatic changes. Thus, Cassidulina carinata in the area of investigation is an excellent indicator for sediments deposited during times, which were cooler than today; this is true for all cores from the continental slope off Sierra Leone independent of water-depth although this species presently abounds at water-depths around 600 m. The cores from the continental rise and from the Sierra Leone Basin (M30-261, M30-146, M30-147) were deposited below the calcium carbonate compensation depth. Only small sections of the cores consist of the original carbonate-free sediments, whereas the main part of the sediment column is redeposited material, rich in foraminifera, which normally live on the upper continental slope, or even on the shelf. From these cores only M30-261 can be subdivided into biostratigraphic zones ranging from zone V to zone Y. In all cores from the middle and upper continental slope of the eastern area of investigation (profile C; KL 230, 209-204) and in cores KL 183 and KL 184 from the northwestern area (profile A) we observed an undisturbed succession of sediments from the biostratigraphic zones X (partly), Y and Z. All cores from the central area (M30-181, M30-182, M30-262 to 264) and M30-187 from the upper slope of profile A show variable hiatuses in the sedimentary record. Locally, high velocity bottom currents were probably responsible for erosion, nondeposition or minimal sedimentation rates. These currents might have been initiated partly by the somewhat exposed position of this part of the continental slope, where the shelf edge bends from a northwest towards an eastern direction, and partly by very young tectonic movements. Fracture zones with vertically displaced fault blocs are frequent at Sierra Leone continental margin. According to seismic measurements by McMaster et al. (1975) the sites of the central area are located on an uplifted fault bloc explaining the reduced sediment rates or erosion. Unlike the central area, the eastern area (profile C) is situated on a downfaulted bloc with high sediment rates. The sediments from the cores of profile B as well as the turbiditic deep-sea sediments were deposited under a higher flow regime; therefore they are coarser than the extremely fine-grained sediments of the cores from profile C. Since the sand fraction (> 63 µm) is mainly composed of foraminifera, besides pteropods and light-colored fecal pellets, the carbonate content increases with the increasing percentage of the coarse grain fraction. Higher concentrations of quartz were only observed in core sections with considerable carbonate dissolution (mainly in the X-Zone), and, in general, in all sediments from the eastern area with higher terrigenous input including larger concentration of mica. Especially during times transitional between glacials and interglacials (or interstadials) the bottom currents were intensified. The percentages of coarse fraction and carbonate increase with increasing current velocities. Calcium carbonate dissolution becomes important in water depths > 3500 m. During cooler times the lysokline is depressed. Light-colored fecal pellets were redeposited from Late Neogene sediments (M30-187, M30-181). In the area of investigation they occur in the Holocene and mainly the Pleistocene sediments of the cores from the northwestern and central area because only here Tertiary sediments have been eroded at the uppermost continental slope. In the central area there are at least two periods of non-sedimentation and/or erosion which can be confined as being (1) not older than middle Pliocene and not younger than zone V and (2) younger than zone W. The local character of the erosion is documented by the fact that a complete Late Quaternary section is present in the cores of the northwestern and eastern area, each within less than 100 km from incomplete cores from the central area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper deals with regularities of distribution of iron, manganese, copper, nickel, and vanadium in interstitial waters from different lithofacies types of bottom sediments on the profile from the coast of Mexico to the Wake Atoll in the Pacific Ocean. With increasing distance from the shore and with transition from reduced coastal sediments to oxidized deep-sea red clays concentration of iron and manganese in the interstitial waters greatly decreases. Elevated concentration of dissolved iron (0.34 mg/l) was observed only in highly reduced terrigenous sediments from the shelf and continental slope of Mexico. The highest concentrations of manganese (13.2 mg/l) were measured in hemipelagic carbonate-siliceous-clayey sediments. Compared to Pacific seawater interstitial waters are enriched in Fe, Mn, Cu, Ni, V. Interstitial waters contain only from 0.000004 to 1.2% of total contents of these elements in bottom sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (d13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution sedimentological and geochemical study was performed on a 20 m long core from the alpine Lake Anterne (2063 m a.s.l., NW French Alps) spanning the last 10 ka. Sedimentation is mainly of minerogenic origin. The organic matter quantity (TOC%) as well as its quality (hydrogen (HI) and oxygen (OI) indices) both indicate the progressive onset and subsequent stabilization of vegetation cover in the catchment from 9950 to 5550 cal. BP. During this phase, the pedogenic process of carbonate dissolution is marked by a decrease in the calcium content in the sediment record. Between 7850 and 5550 cal. BP, very low manganese concentrations suggest anoxic conditions in the bottom-water of Lake Anterne. These are caused by a relatively high organic matter (terrestrial and lacustrine) content, a low flood frequency and longer summer stratification triggered by warmer conditions. From 5550 cal. BP, a decrease in TOC, stabilization of HI and higher sedimentation rates together reflect increased erosion rates of leptosols and developed soils, probably due to a colder and wetter climate. Then, three periods of important soil destabilization are marked by an increased frequency and thickness of flood deposits during the Bronze Age and by increases in topsoil erosion relative to leptosols (HI increases) during the late Iron Age/Roman period and the Medieval periods. These periods are also characterized by higher sedimentation rates. According to palynological data, human impact (deforestation and/or pasturing activity) probably triggered these periods of increased soil erosion.