987 resultados para Capacity Expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the cities in India are undergoing rapid development in recent decades, and many rural localities are undergoing transformation to urban hotspots. These developments have associated land use/land cover (LULC) change that effects runoff response from catchments, which is often evident in the form of increase in runoff peaks, volume and velocity in drain network. Often most of the existing storm water drains are in dilapidated stage owing to improper maintenance or inadequate design. The drains are conventionally designed using procedures that are based on some anticipated future conditions. Further, values of parameters/variables associated with design of the network are traditionally considered to be deterministic. However, in reality, the parameters/variables have uncertainty due to natural and/or inherent randomness. There is a need to consider the uncertainties for designing a storm water drain network that can effectively convey the discharge. The present study evaluates performance of an existing storm water drain network in Bangalore, India, through reliability analysis by Advance First Order Second Moment (AFOSM) method. In the reliability analysis, parameters that are considered to be random variables are roughness coefficient, slope and conduit dimensions. Performance of the existing network is evaluated considering three failure modes. The first failure mode occurs when runoff exceeds capacity of the storm water drain network, while the second failure mode occurs when the actual flow velocity in the storm water drain network exceeds the maximum allowable velocity for erosion control, whereas the third failure mode occurs when the minimum flow velocity is less than the minimum allowable velocity for deposition control. In the analysis, runoff generated from subcatchments of the study area and flow velocity in storm water drains are estimated using Storm Water Management Model (SWMM). Results from the study are presented and discussed. The reliability values are low under the three failure modes, indicating a need to redesign several of the conduits to improve their reliability. This study finds use in devising plans for expansion of the Bangalore storm water drain system. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. (C) 2015 The Authors. Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Li-rich layered-spinel material with a target composition Li1.17Ni0.25Mn1.08O3 (xLiLi1/3Mn2/3]O-2.(1 - x) LiNi0.5Mn1.5O4, (x = 0.5)) was synthesized by a self-combustion reaction (SCR), characterized by XRD, SEM, TEM, Raman spectroscopy and was studied as a cathode material for Li-ion batteries. The Rietveld refinement results indicated the presence of monoclinic (LiLi1/3Mn2/3]O-2) (52%), spinel (LiNi0.5Mn1.5O4) (39%) and rhombohedral LiNiO2 (9%). The electrochemical performance of this Li-rich integrated cathode material was tested at 30 degrees C and compared to that of high voltage LiNi0.5Mn1.5O4 spinel cathodes. Interestingly, the layered-spinel integrated cathode material exhibits a high specific capacity of about 200 mA h g(-1) at C/10 rate as compared to 180 mA h g(-1) for LiNi0.5Mn1.5O4 in the potential range of 2.4-4.9 V vs. Li anodes in half cells. The layered-spinel integrated cathodes exhibited 92% capacity retention as compared to 82% for LiNi0.5Mn1.5O4 spinel after 80 cycles at 30 degrees C. Also, the integrated cathode material can exhibit 105 mA h g(-1) at 2 C rate as compared to 78 mA h g(-1) for LiNi0.5Mn1.5O4. Thus, the presence of the monoclinic phase in the composite structure helps to stabilize the spinel structure when high specific capacity is required and the electrodes have to work within a wide potential window. Consequently, the Li1.17Ni0.25Mn1.08O3 composite material described herein can be considered as a promising cathode material for Li ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bearing capacity factors because of the components of cohesion, surcharge, and unit weight, respectively, have been computed for smooth and rough ring footings for different combinations of r(i)= r(o) and. by using lower and upper bound theorems of the limit analysis in conjunction with finite elements and linear optimization, where r(i) and r(o) refer to the inner and outer radii of the ring, respectively. It is observed that for a smooth footing with a given value of r(o), the magnitude of the collapse load decreases continuously with an increase in r(i). Conversely, for a rough base, for a given value of r(o), hardly any reduction occurs in the magnitude of the collapse load up to r(i)= r(o) approximate to 0.2, whereas for r(i)= r(o) > 0.2, the magnitude of the collapse load, similar to that of a smooth footing, decreases continuously with an increase in r(i)= r(o). The results from the analysis compare reasonably well with available theoretical and experimental data from the literature. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the effect of electric field on energy absorption capacity of carbon nanotube forests (CNTFs), comprising of vertically aligned multiwalled carbon nanotubes, under both quasistatic (strain rate, (epsilon) over dot = 10(-3) s(-1)) and dynamic ((epsilon) over dot = similar to 10(3) s(-1)) loading conditions. Under quasistatic condition, the CNTFs were cyclically loaded and unloaded while electric field was applied along the length of carbon nanotube (CNT) either throughout the loading cycle or explicitly during either the loading or the unloading segment. The energy absorbed per cycle by CNTF increased monotonically with electric field when the field was applied only during the loading segment: A 7 fold increase in the energy absorption capacity was registered at an electric field of 1 kV/m whereas no significant change in it was noted for other schemes of electro-mechanical loading. The energy absorption capacity of CNTF under dynamic loading condition also increased monotonically with electric field; however, relative to the quasistatic condition, less pronounced effect was observed. This intriguing strain rate dependent effect of electric field on energy absorption capacity of CNTF is explained in terms of electric field induced strengthening of CNTF, originating from the time dependent electric field induced polarization of CNT. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bearing capacity of a circular footing lying over fully cohesive strata, with an overlaying sand layer, is computed using the axisymmetric lower bound limit analysis with finite elements and linear optimization. The effects of the thickness and the internal friction angle of the sand are examined for different combinations of c(u)/(gamma b) and q, where c(u)=the undrained shear strength of the cohesive strata, gamma=the unit weight of either layer, b=the footing radius, and q=the surcharge pressure. The results are given in the form of a ratio (eta) of the bearing capacity with an overlaying sand layer to that for a footing lying directly over clayey strata. An overlaying medium dense to dense sand layer considerably improves the bearing capacity. The improvement continuously increases with decreases in c(u)/(gamma b) and increases in phi and q/(gamma b). A certain optimum thickness of the sand layer exists beyond which no further improvement occurs. This optimum thickness increases with an increase in 0 and q and with a decrease in c(u)/(gamma b). Failure patterns are also drawn to examine the inclusion of the sand layer. (C) 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bearing capacity factors, N-c, N-q, and N-gamma, for a conical footing are determined by using the lower and upper bound axisymmetric formulation of the limit analysis in combination with finite elements and optimization. These factors are obtained in a bound form for a wide range of the values of cone apex angle (beta) and phi with delta = 0, 0.5 phi, and phi. The bearing capacity factors for a perfectly rough (delta = phi) conical footing generally increase with a decrease in beta. On the contrary, for delta = 0 degrees, the factors N-c and N-q reduce gradually with a decrease in beta. For delta = 0 degrees, the factor N-gamma for phi >= 35 degrees becomes a minimum for beta approximate to 90 degrees. For delta = 0 degrees, N-gamma for phi <= 30 degrees, as in the case of delta = phi, generally reduces with an increase in beta. The failure and nodal velocity patterns are also examined. The results compare well with different numerical solutions and centrifuge tests' data available from the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling the spatial variability that exists in pavement systems can be conveniently represented by means of random fields; in this study, a probabilistic analysis that considers the spatial variability, including the anisotropic nature of the pavement layer properties, is presented. The integration of the spatially varying log-normal random fields into a linear-elastic finite difference analysis has been achieved through the expansion optimal linear estimation method. For the estimation of the critical pavement responses, metamodels based on polynomial chaos expansion (PCE) are developed to replace the computationally expensive finite-difference model. The sparse polynomial chaos expansion based on an adaptive regression-based algorithm, and enhanced by the combined use of the global sensitivity analysis (GSA) is used, with significant savings in computational effort. The effect of anisotropy in each layer on the pavement responses was studied separately, and an effort is made to identify the pavement layer wherein the introduction of anisotropic characteristics results in the most significant impact on the critical strains. It is observed that the anisotropy in the base layer has a significant but diverse effect on both critical strains. While the compressive strain tends to be considerably higher than that observed for the isotropic section, the tensile strains show a decrease in the mean value with the introduction of base-layer anisotropy. Furthermore, asphalt-layer anisotropy also tends to decrease the critical tensile strain while having little effect on the critical compressive strain. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the recent work of the authors in development and numerical verification of a new kinematic approach of the limit analysis for surface footings on non-associative materials, a practical procedure is proposed to utilize the theory. It is known that both the peak friction angle and dilation angle depend on the sand density as well as the stress level, which was not the concern of the former work. In the current work, a practical procedure is established to provide a better estimate of the bearing capacity of surface footings on sand which is often non-associative. This practical procedure is based on the results obtained theoretically and requires the density index and the critical state friction angle of the sand. The proposed practical procedure is a simple iterative computational procedure which relates the density index of the sand, stress level, dilation angle, peak friction angle and eventually the bearing capacity. The procedure is described and verified among available footing load test data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The input-constrained erasure channel with feedback is considered, where the binary input sequence contains no consecutive ones, i.e., it satisfies the (1, infinity)-RLL constraint. We derive the capacity for this setting, which can be expressed as C-is an element of = max(0 <= p <= 0.5) (1-is an element of) H-b (p)/1+(1-is an element of) p, where is an element of is the erasure probability and Hb(.) is the binary entropy function. Moreover, we prove that a priori knowledge of the erasure at the encoder does not increase the feedback capacity. The feedback capacity was calculated using an equivalent dynamic programming (DP) formulation with an optimal average-reward that is equal to the capacity. Furthermore, we obtained an optimal encoding procedure from the solution of the DP, leading to a capacity-achieving, zero-error coding scheme for our setting. DP is, thus, shown to be a tool not only for solving optimization problems, such as capacity calculation, but also for constructing optimal coding schemes. The derived capacity expression also serves as the only non-trivial upper bound known on the capacity of the input-constrained erasure channel without feedback, a problem that is still open.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discussion has been provided for the comments raised by the discusser (Clausen, 2015)1] on the article recently published by the authors (Chakraborty and Kumar, 2015). The effect of exponent alpha for values of GSI approximately smaller than 30 becomes more critical. On the other hand, for greater values of GSI, the results obtained by the authors earlier remain primarily independent of alpha and can be easily used. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized spatial modulation (GSM) uses N antenna elements but fewer radio frequency (RF) chains (R) at the transmitter. In GSM, apart from conveying information bits through R modulation symbols, information bits are also conveyed through the indices of the R active transmit antennas. In this letter, we derive lower and upper bounds on the the capacity of a (N, M, R)-GSM MIMO system, where M is the number of receive antennas. Further, we propose a computationally efficient GSM encoding method and a message passing-based low-complexity detection algorithm suited for large-scale GSM-MIMO systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered composite samples of lithium-rich manganese oxide (Li1.2Mn0.6Ni0.2O2) are prepared by a reverse microemutsion route employing a soft polymer template and studied as a positive electrode material. The product samples possess dual porosity with distribution of pores at 3.5 and 60 nm. Pore volume and surface area decrease on increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity value of the samples prepared at 800 and 900 degrees C is about 240 mA h g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. The composite sample heated at 900 degrees C possesses a high rate capability with a discharge capacity of 100 mA h g(-1) at a specific current of 500 mA g(-1). The high rate capability is attributed to porous nature of the composite sample.