960 resultados para Ca2 Transient
Resumo:
BACKGROUND: The Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic attack (PERFORM) study is an international double-blind, randomized controlled trial designed to investigate the superiority of the specific TP receptor antagonist terutroban (30 mg/day) over aspirin (100 mg/day), in reducing cerebrovascular and cardiovascular events in patients with a recent history of ischemic stroke or transient ischemic attack. Here we describe the baseline characteristics of the population. METHODS AND RESULTS: Parameters recorded at baseline included vital signs, risk factors, medical history, and concomitant treatments, as well as stroke subtype, stroke-associated disability on the modified Rankin scale, and scores on scales for cognitive function and dependency. Eight hundred and two centers in 46 countries recruited a total of 19,119 patients between February 2006 and April 2008. The population is evenly distributed and is not dominated by any one country or region. The mean +/- SD age was 67.2 +/- 7.9 years, 63% were male, and 83% Caucasian; 83% had hypertension, and about half the population smoked or had quit smoking. Ninety percent of the qualifying events were ischemic stroke, 67% of which were classified as atherothrombotic or likely atherothrombotic (pure or coexisting with another cause). Modified Rankin scale scores showed slight or no disability in 83% of the population, while the scores on the Mini-Mental State Examination, Isaacs' Set Test, Zazzo's Cancellation Test, and the instrumental activities of daily living scale showed a good level of cognitive function and autonomy. CONCLUSIONS: The PERFORM study population is homogeneous in terms of demographic and disease characteristics. With 19,119 patients, the PERFORM study is powered to test the superiority of terutroban over aspirin in the secondary prevention of cerebrovascular and cardiovascular events in patients with a recent history of ischemic stroke or transient ischemic attack.
Resumo:
BACKGROUND: Ischemic stroke is the leading cause of mortality worldwide and a major contributor to neurological disability and dementia. Terutroban is a specific TP receptor antagonist with antithrombotic, antivasoconstrictive, and antiatherosclerotic properties, which may be of interest for the secondary prevention of ischemic stroke. This article describes the rationale and design of the Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic Attack (PERFORM) Study, which aims to demonstrate the superiority of the efficacy of terutroban versus aspirin in secondary prevention of cerebrovascular and cardiovascular events. METHODS AND RESULTS: The PERFORM Study is a multicenter, randomized, double-blind, parallel-group study being carried out in 802 centers in 46 countries. The study population includes patients aged > or =55 years, having suffered an ischemic stroke (< or =3 months) or a transient ischemic attack (< or =8 days). Participants are randomly allocated to terutroban (30 mg/day) or aspirin (100 mg/day). The primary efficacy endpoint is a composite of ischemic stroke (fatal or nonfatal), myocardial infarction (fatal or nonfatal), or other vascular death (excluding hemorrhagic death of any origin). Safety is being evaluated by assessing hemorrhagic events. Follow-up is expected to last for 2-4 years. Assuming a relative risk reduction of 13%, the expected number of primary events is 2,340. To obtain statistical power of 90%, this requires inclusion of at least 18,000 patients in this event-driven trial. The first patient was randomized in February 2006. CONCLUSIONS: The PERFORM Study will explore the benefits and safety of terutroban in secondary cardiovascular prevention after a cerebral ischemic event.
Resumo:
BACKGROUND: Depressive symptoms and caregiving stress may contribute to cardiovascular disease (CVD) via chronic platelet activation; however, it remains unclear whether this elevated activation constitutes a trait or state marker. The primary objective was to investigate whether persistent depressive symptoms would relate to elevated platelet activation in response to acute psychological stress over a three-year period. METHODS: Depressive symptoms (Brief Symptom Inventory) were assessed among 99 spousal dementia caregivers (52-88 years). Platelet P-selectin expression was assessed in vivo using flow cytometry at three time-points over the course of an acute stress test: baseline, post-stress, and after 14 min of recovery. Two competing structural analytic models of depressive symptoms and platelet hyperactivity with three yearly assessments were compared. RESULTS: Although depressive symptoms were generally in the subclinical range, their persistent elevation was associated with heightened platelet reactivity and recovery at all three-years while the change in depressive symptoms from the previous year did not predict platelet activity. LIMITATIONS: These results focus on caregivers providing consistent home care, while future studies may extend these results by modeling major caregiving stressors. CONCLUSIONS: Enduring aspects of negative affect, even among those not suffering from clinical depression are related to hemostatic changes, in this case platelet reactivity, which might be one mechanism for previously reported increase in CVD risk among elderly Alzheimer caregivers.
Resumo:
The large-crowned emergent tree Microberlinia bisulcata dominates rain forest groves at Korup National Park, Cameroon, along with two codominants, Tetraberlinia bifoliolata and T. korupensis. M. bisulcata has a pronounced modal size frequency distribution around 110 cm stem diameter: its recruitment potential is very poor. It is a long-lived light-demanding species, one of many found in African forests. Tetraberlinia species lack modality, are more shade tolerant, and recruit better. All three species are ectomycorrhizal. M. bisulcata dominates grove basal area, even though it has similar numbers of trees (50 cm stem diameter) as each of the other two species. This situation presented a conundrum that prompted a long-term study of grove dynamics. Enumerations of two plots (82.5 and 56.25 ha) between 1990 and 2010 showed mortality and recruitment of M. bisulcata to be very low (both rates 0.2% per year) compared with Tetraberlinia (2.4% and 0.8% per year), and M. bisulcata grows twice as fast as the Tetraberlinia. Ordinations indicated that these three species determined community structure by their strong negative associations while other species showed almost none. Ranked species abundance curves fitted the Zipf-Mandelbrot model well and allowed overdominance of M. bisulcata to be estimated. Spatial analysis indicated strong repulsion by clusters of large (50 to <100 cm) and very large (100 cm) M. bisulcata of their own medium-sized (10 to <50 cm) trees and all sizes of Tetraberlinia. This was interpreted as competition by M. bisulcata increasing its dominance, but also inhibition of its own replacement potential. Stem coring showed a modal age of 200 years for M. bisulcata, but with large size variation (50150 cm). Fifty-year model projections suggested little change in medium, decreases in large, and increases in very large trees of M. bisulcata, accompanied by overall decreases in medium and large trees of Tetraberlinia species. Realistically increasing very-large-tree mortality led to grove collapse without short-term replacement. M. bisulcata most likely depends on climatic events to rebuild its stands: the ratio of disturbance interval to median species' longevity is important. A new theory of transient dominance explains how M. bisulcata may be cycling in abundance over time and displaying nonequilibrium dynamics.
Resumo:
Commercially available LaBr3:5% Ce3+ scintillators show with photomultiplier tube readout about 2.7% energy resolution for the detection of 662 keV -rays. Here we will show that by co-doping LaBr3:Ce3+ with Sr2+ or Ca2+ the resolution is improved to 2.0%. Such an improvement is attributed to a strong reduction of the scintillation light losses that are due to radiationless recombination of free electrons and holes during the earliest stages (110 ps) inside the high free charge carrier density parts of the ionization track.
Improvement of LaBr3:5%Ce scintillation properties by Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping
Resumo:
This paper reports on the effects of Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping on the scintillation properties of LaBr3:5%Ce3+. Pulse-height spectra of various gamma and X-ray sources with energies from 8 keV to 1.33 MeV were measured from which the values of light yield and energy resolution were derived. Sr2+ and Ca2+ co-doped crystals showed excellent energy resolution as compared to standard LaBr3:Ce. The proportionality of the scintillation response to gamma and X-rays of Ca2+, Sr2+, and Ba2+ co-doped samples also considerably improves. The effects of the co-dopants on emission spectra, decay time, and temperature stability of the light yield were studied. Multiple thermoluminescence glow peaks, decrease of the light yield at temperatures below 295 K, and additional long scintillation decay components were observed and related to charge carrier traps appearing in LaBr3:Ce3+ with Ca2+, Sr2+, and Ba2+ co-doping.
Resumo:
Data assimilation methods used for transient atmospheric state estimations in paleoclimatology such as covariance-based approaches, analogue techniques and nudging are briefly introduced. With applications differing widely, a plurality of approaches appears to be the logical way forward.
Resumo:
Objective To evaluate the feasibility and effectiveness of a comprehensive outpatient rehabilitation program combining secondary prevention and neurorehabilitation to improve vascular risk factors, neurologic functions, and health-related quality of life (HRQOL) in patients surviving a transient ischemic attack (TIA) or stroke with minor or no residual deficits. Design Prospective interventional single-center cohort study. Setting University hospital. Participants Consecutive consenting patients having sustained a TIA or stroke with 1 or more vascular risk factors (N=105) were included. Interventions Three-month hospital-based secondary prevention and neurorehabilitation outpatient program with therapeutic and educational sessions twice a week. Patients were evaluated at entry and program end. Main Outcome Measures Impact on vascular risk factors, neurological outcome, and HRQOL. Results A total of 105 patients entered the program and 95 patients completed it. Exercise capacity (P<.000), smoking status (P=.001), systolic (P=.001) and diastolic (P=.008) blood pressure, body mass index (P=.005), low-density lipoprotein cholesterol (P=.03), and triglycerides (P=.001) improved significantly. Furthermore, the 9-Hole-Peg-Test (P<.000), Six-minute Walking Test (P<.000), and One Leg Stand Test (P<.011) values as well as HRQOL improved significantly. The program could be easily integrated into an existing cardiovascular prevention and rehabilitation center and was feasible and highly accepted by patients. Conclusions Comprehensive combined cardiovascular and neurologic outpatient rehabilitation is feasible and effective to improve vascular risk factors, neurologic functions, and HRQOL in patients surviving TIA or stroke with minor or no residual deficits.
Resumo:
Extensive glaciers repeatedly occupied the northern Alpine Foreland during the Pleistocene and left a strongly glacially overprinted low slope landscape. Only few islands appeared as nunataks standing above the surface of the large piedmont glacier lobes. These nunatak areas kept their original shape, manifested in steep catchments with mean slopes up to 33 . Even though not glaciated, these catchments where significantly affected by base-level changes occurring as a consequence of phases of glacier advances and retreats. Both domains, the glacially eroded and non-eroded, are therefore prone to different mechanisms and time-scales of fluvial and colluvial re-adjustment. In this study we investigate these effects by exploring the spatial distribution and magnitude of denudation in the Hrnli region of the eastern Swiss Alpine Foreland in the present Interglacial. The area represents both domains in a relatively small area with largely uniform tectonic, lithologic and climatic conditions. The differences in Holocene andscape evolution are investigated using topographic analyses and catchment-averaged denudation rates derived from 10Be concentrations in fluvial quartz sand. We find that in formerly non-glaciated, fluvially dominated catchments close hillslope-channel coupling prevails and that these catchments yield high average denudation rates of 350 mm/ka. Glacially overprinted catchments yielded catchment-wide denudation rates an order of magnitude lower. These low denudation rates are hypothesized to be the consequence of both (i) a dominance of slow hillslope processes and (ii) admixture of high concentration, pre-LGM glacial sediment. This suggests that a) a careful field investigation must accompany the denudation rate studies and b) that the concept of area-weighted cosmogenic nuclide denudation rates must be considered in light of the predominant catchment processes.
Resumo:
Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.
Resumo:
In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca(2+) release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca(2+)-induced Ca(2+) release mechanism and contribute a large fraction of the Ca(2+) required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca(2+) sensitivity. Presently, research in a number of laboratories is focused on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS/RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
Numerical simulation experiments give insight into the evolving energy partitioning during high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to steady state. The transient regime is crucial for understanding the importance of micro structural processes that may lead to strain localization phenomena in deforming materials. This is particularly important in geological and geodynamic applications where the phenomenon of strain localization happens outside the time frame that can be observed under controlled laboratory conditions. Ourmethod is based on an extension of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter, strain rates, temperature, and lambda factor as well asmesh sensitivity are presented to explore the sensitivity of the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid computational-laboratory-field modeling workflow. The analysis could be improved through independent verifications by thermographic analysis in physical laboratory experiments to independently assess lambda factor evolution under laboratory conditions.
Resumo:
The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between 20 and +50 g C m2 yr1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365550 Pg C since the LGM, of which 175272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 3550 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.