841 resultados para CTD, memory
Resumo:
Russell's theory of memory as acquaintance with the past seems to square uneasily with his definition of acquaintance as the converse of the relation of presentation of an object to a subject. We show how the two views can be made to cohere under a suitable construal of 'presentation', which has the additional appeal of bringing Russell's theory of memory closer to contemporary views on direct reference and object-dependent thinking than is usually acknowledged. The drawback is that memory as acquaintance with the past falls short of fulfilling Russell's requirement that knowledge by acquaintance be discriminating knowledge - a shortcoming shared by contemporary externalist accounts of knowledge from memory.
Resumo:
Teemanumero 2/2011: Media ja menneisyys.
Resumo:
VTT Jouni Meriluodon valtio-opin alaan kuuluva väitöskirja Systems between information and knowledge : in a memory management model of an extended enterprise tarkastettiin 21.6.2011 Helsingin yliopistossa.
Resumo:
In this Thesis various aspects of memory effects in the dynamics of open quantum systems are studied. We develop a general theoretical framework for open quantum systems beyond the Markov approximation which allows us to investigate different sources of memory effects and to develop methods for harnessing them in order to realise controllable open quantum systems. In the first part of the Thesis a characterisation of non-Markovian dynamics in terms of information flow is developed and applied to study different sources of memory effects. Namely, we study nonlocal memory effects which arise due to initial correlations between two local environments and further the memory effects induced by initial correlations between the open system and the environment. The last part focuses on describing two all-optical experiment in which through selective preparation of the initial environment states the information flow between the system and the environment can be controlled. In the first experiment the system is driven from the Markovian to the non- Markovian regime and the degree of non-Markovianity is determined. In the second experiment we observe the nonlocal nature of the memory effects and provide a novel method to experimentally quantify frequency correlations in photonic environments via polarisation measurements.
Resumo:
Resultaten påvisade små, men mätbara försämringar i minnes- och verbal förmåga hos personer som haft Parkinsons sjukdom under tre år. Jämfört med en kontrollgrupp uppvisade Parkinsonpatienter avvikande responser i hjärnans elektriska aktivitet under en korttidsminnesuppgift, och de presterade även sämre i olika typer av andra minnesuppgifter. Försämring i en specifik typ av minnesuppgift korrelerade med förminskad volym i höger hjärnhalva. Samband hittades också mellan sämre verbal förmåga och förminskad volym i djupa hjärnstrukturer. Förminskad hjärnvolym har tidigare påvisats hos dementa patienter i senare sjukdomsstadier. Forskningsresultaten bidrar med ny kunskap om kognitiva symptom och deras neurala bakgrund vid Parkinsons sjukdom. De tyder också på att tidig kognitiv funktionsnedsättning kan identifieras, vilket kan bidra till utvecklingen av sjukdomens behandling. Parkinsons sjukdom är den näst vanligaste neurogeriatriska sjukdomen efter Alzheimers sjukdom. Symptomen uppstår som följd av förminskad produktion av hjärnans transmittorämne dopamin. Parkinsons sjukdom har traditionellt betraktats som en progressiv motorisk sjukdom. Ny forskning tyder på att multipla hjärnsystem skadas, vilket resulterar i att även tankeprocesser påverkas. 75-80% uppskattas insjukna i demens 10-15 år efter diagnos, men det kognitiva sjukdomsförloppet och orsaken till demenssymptomen är tillsvidare okänd. I Finland uppskattas ca 10-12 000 personer ha Parkinsons sjukdom, varav ca 3 000 uppskattas ha demens. ----------------------------------------------------------------------------------------------------------------------------------------------------- Tutkimuksessa todettiin lieviä muutoksia muisti- ja kielellisissä toiminnoissa alle kolme vuotta sairastaneilla Parkinson-potilailla. Potilailla havaittiin poikkeavia aivosähkötoiminnan vasteita lyhytkestoista muistia mittaavan tehtävän aikana. Potilaat suoriutuivat myös verrokkiryhmää heikommin useissa muistitehtävissä. Heikentynyt tahaton muisti liittyi pienempään aivokuoren harmaan aineen paikalliseen tilavuuteen. Heikompi kielellinen suoriutuminen liittyi pienempään harmaan aineen tilavuuteen aivojen syvissä rakenteissa. Pienentyneitä aivorakenteiden tilavuuksia on aiemmin todettu dementoituneilla Parkinson-potilailla sairauden myöhemmissä vaiheissa. Tutkimustulokset tuovat uutta tietoa Parkinsonin taudin kognitiivisista oireista ja niiden aivoperäisestä taustasta. Tulosten perusteella on mahdollista tunnistaa jo varhaisia kognitiivisia muutoksia, mikä voi mahdollistaa tehokkaamman hoidon kohdentamisen. Parkinsonin tauti on Alzheimerin taudin jälkeen toiseksi yleisin neurogeriatrinen sairaus. Oirekuva liittyy aivojen dopaminergisen järjestelmän rappeutumiseen. Perinteisesti liikehäiriösairaudeksi luokiteltu sairaus vaurioittaa lukuisia muita aivojärjestelmiä aiheuttaen muutoksia myös mm. ajattelutoiminnoissa. Pitkään sairastaneista 75–80 prosentilla esiintyy dementiaoireita, mutta oireiden syy ja kehityskaari tunnetaan toistaiseksi huonosti. Suomessa on arviolta 10–12 000 Parkinson-potilasta, joista noin 3 000 arvioidaan kärsivän dementiaoireista.
Resumo:
A total of 182 young adult male Wistar rats were bilaterally implanted with cannulae into the CA1 region of the dorsal hippocampus and into the amygdaloid nucleus, the entorhinal cortex, and the posterior parietal cortex. After recovery, the animals were trained in a step-down inhibitory avoidance task. At various times after training (0, 30, 60 or 90 min) the animals received a 0.5-µl microinfusion of vehicle (saline) or 0.5 µg of muscimol dissolved in the vehicle. A retention test was carried out 24 h after training. Retention test performance was hindered by muscimol administered into both the hippocampus and amygdala at 0 but not at 30 min posttraining. The drug was amnestic when given into the entorhinal cortex 30, 60 or 90 min after training, or into the parietal cortex 60 or 90 min after training, but not before. These findings suggest a sequential entry operation, during the posttraining period, of the hippocampus and amygdala, the entorhinal cortex, and the posterior parietal cortex in memory processing
Resumo:
Lesions of the entorhinal cortex produce retrograde memory impairment in both animals and humans. Here we report the effects of bilateral entorhinal cortex lesions caused by the stereotaxic infusion of N-methyl-D-aspartate (NMDA) in rats at two different moments, before or after the training session, on memory of different tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Pre- or post-training entorhinal cortex lesions caused an impairment of performance in the shuttle avoidance task, which agrees with the previously described role of this area in the processing of memories acquired in successive sessions. In the inhibitory avoidance task, only the post-training lesions had an effect (amnesia). No effect was observed on the open field task. The findings suggest that the role of the entorhinal cortex in memory processing is task-dependent, perhaps related to the complexity of each task
Resumo:
A decade of studies on long-term habituation (LTH) in the crab Chasmagnathus is reviewed. Upon sudden presentation of a passing object overhead, the crab reacts with an escape response that habituates promptly and for at least five days. LTH proved to be an instance of associative memory and showed context, stimulus frequency and circadian phase specificity. A strong training protocol (STP) (³15 trials, intertrial interval (ITI) of 171 s) invariably yielded LTH, while a weak training protocol (WTP) (£10 trials, ITI = 171 s) invariably failed. STP was used with a presumably amnestic agent and WTP with a presumably hypermnestic agent. Remarkably, systemic administration of low doses was effective, which is likely to be due to the lack of an endothelial blood-brain barrier. LTH was blocked by inhibitors of protein and RNA synthesis, enhanced by protein kinase A (PKA) activators and reduced by PKA inhibitors, facilitated by angiotensin II and IV and disrupted by saralasin. The presence of angiotensins and related compounds in the crab brain was demonstrated. Diverse results suggest that LTH includes two components: an initial memory produced by spaced training and mainly expressed at an initial phase of testing, and a retraining memory produced by massed training and expressed at a later phase of testing (retraining). The initial memory would be associative, context specific and sensitive to cycloheximide, while the retraining memory would be nonassociative, context independent and insensitive to cycloheximide
Resumo:
Training in step-down inhibitory avoidance (0.3-mA footshock) is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA)/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%). Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%). PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%). The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task
Resumo:
Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 µg/side), SCH23390 (0.5 µg/side), norepinephrine (0.3 µg/side), timolol (0.3 µg/side), 8-OH-DPAT (2.5 µg/side), NAN-190 (2.5 µg/side), forskolin (0.5 µg/side), KT5720 (0.5 µg/side) or 8-Br-cAMP (1.25 µg/side). Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were ineffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h after training, which is regulated by D1, ß, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h) in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.
Resumo:
Post-training intracerebroventricular administration of procaine (20 µg/µl) and dimethocaine (10 or 20 µg/µl), local anesthetics of the ester class, prolonged the latency (s) in the retention test of male and female 3-month-old Swiss albino mice (25-35 g body weight; N = 140) in the elevated plus-maze (mean ± SEM for 10 male mice: control = 41.2 ± 8.1; procaine = 78.5 ± 10.3; 10 µg/µl dimethocaine = 58.7 ± 12.3; 20 µg/µl dimethocaine = 109.6 ± 5.73; for 10 female mice: control = 34.8 ± 5.8; procaine = 55.3 ± 13.4; 10 µg/µl dimethocaine = 59.9 ± 12.3 and 20 µg/µl dimethocaine = 61.3 ± 11.1). However, lidocaine (10 or 20 µg/µl), an amide class type of local anesthetic, failed to influence this parameter. Local anesthetics at the dose range used did not affect the motor coordination of mice exposed to the rota-rod test. These results suggest that procaine and dimethocaine impair some memory process(es) in the plus-maze test. These findings are interpreted in terms of non-anesthetic mechanisms of action of these drugs on memory impairment and also confirm the validity of the elevated plus-maze for the evaluation of drugs affecting learning and memory in mice
Resumo:
The present study investigated the effect of repeated stress applied to female rats on memory evaluated by three behavioral tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Repeated stress had different effects on rat behavior when different tasks were considered. In the two-way active avoidance test the stressed animals presented memory of the task, but their memory scores were impaired when compared to all other groups. In the habituation to the open field, only the control group showed a significant difference in the number of rearings between training and testing sessions, which is interpreted as an adequate memory of the task. In the handled and chronically stressed animals, on the other hand, no memory was observed, suggesting that even a very mild repeated stress would be enough to alter habituation to this task. The performance in the inhibitory avoidance task presented no significant differences between groups. The findings suggest that repeated restraint stress might induce cognitive impairments that are dependent on the task and on stress intensity.
Resumo:
We investigated the effects of hippocampal lesions with ibotenic acid (IBO) on the memory of the sound-context-shock association during reexposure to the conditioning context. Twenty-nine adult pigeons were assigned to a non-lesioned control group (CG, N = 7), a sham-lesioned group (SG, N = 7), a hippocampus-lesioned experimental group (EG, N = 7), and to an unpaired nonlesioned group (tone-alone exposure) (NG, N = 8). All pigeons were submitted to a 20-min session in the conditioning chamber with three associations of sound (1000 Hz, 85 dB, 1 s) and shock (10 mA, 1 s). Experimental and sham lesions were performed 24 h later (EG and SG) when EG birds received three bilateral injections (anteroposterior (A), 4.5, 5.25 and 7.0) of IBO (1 µl and 1 µg/µl) and SG received one bilateral injection (A, 5.25) of PBS. The animals were reexposed to the training context 5 days after the lesion. Behavior was videotaped for 20 min and analyzed at 30-s intervals. A significantly higher percent rating of immobility was observed for CG (median, 95.1; range, 79.2 to 100.0) and SG (median, 90.0; range, 69.6 to 95.0) compared to EG (median, 11.62; range, 3.83 to 50.1) and NG (median, 7.33; range, 6.2 to 28.1) (P<0.001) in the training context. These results suggest impairment of contextual fear in birds who received lesions one day after conditioning and a role for the hippocampus in the modulation of emotional aversive memories in pigeons.
Resumo:
This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.