938 resultados para CRITICAL HEAT FLUX
Resumo:
Upwelling velocities w in the equatorial band are too small to be directly observed. Here, we apply a recently proposed indirect method, using the observed helium isotope (3He or 4He) disequilibria in the mixed layer. The helium data were sampled from three cruises in the eastern tropical Atlantic in September 2005 and June/July 2006. A one-dimensional two-box model was applied, where the helium air-sea gas exchange is balanced by upwelling from 3He-rich water below the mixed layer and by vertical mixing. The mixing coefficients Kv were estimated from microstructure measurements, and on two of the cruises, Kv exceeded 1 x 10**-4 m**2/s, making the vertical mixing term of the same order of magnitude as the gas exchange and the upwelling term. In total, helium disequilibrium was observed on 54 stations. Of the calculated upwelling velocities, 48% were smaller than 1.0 x 10**-5 m/s, 19% were between 1.0 and 2.0 x 10**-5 m/s, 22% were between 2.0 and 4.0 x 10**-5 m/s, and on 11% of upwelling velocities exceeded this limit. The highest upwelling velocities were found in late June 2006. Meridional upwelling distribution indicated an equatorial asymmetry with higher vertical velocities between the equator and 1° to 2° south compared to north of the equator, particularly at 10°W. Associated heat flux into the mixed layer could be as high as 138 W/m**2, but this depends strongly on the chosen depths where the upwelled water comes from. By combining upwelling velocities with sea surface temperature and productivity distributions, a mean monthly equatorial upwelling rate of 19 Sv was estimated for June 2006 and a biweekly mean of 24 Sv was estimated for September 2005.
Resumo:
A high-resolution diatom census coupled with other proxy data from Laurentian Fan (LF) provides a detailed description of the last deglaciation, bringing new insight to that period by revealing directly the timing of sea-ice formation and melting. Cold events Heinrich Event 1 (H1) and the Younger Dryas (YD) were multiphase events. H1 (~16.8-15.7 cal kyr BP) was defined by a two-pulse release of icebergs promoting sea-ice formation. Melting of sea-ice after H1 corresponds to a cold and fresh anomaly that may have kept the Bølling colder than the Allerød. At ~13.6 cal kyr BP, a cooling trend culminated with sea-ice formation, marking the YD onset (~12.8 cal kyr BP). The decrease in sea-ice (~12.2 cal kyr BP) led to a YD second phase characterized by very cold winters. However, the contribution of warm water diatoms tends to increase at the same time and the YD gradual end (~11.6 cal kyr BP) contrasts with its abrupt end in Greenland ice cores. The YD cannot be regarded as an event triggered by a fresh water input through the Laurentian Channel since only one weak brief input nearly 1000 yrs after its onset is recorded. Very cold and cool conditions without ice mark the following Preboreal. A northward heat flux between 10.8 and 10.2 cal kyr BP was interrupted by the increased influence of coastal waters likely fed by inland melting. There was no further development of sea-ice or ice-drift then.
Resumo:
The magnitude of Late Holocene climatic variations are less significant than those that took place during ice ages and deglaciations. However, detailed knowledge about this period is vital in order to understand and model future climate scenarios both as a result of natural climate variation and the effects of global warming. Oceanic heat flux is important for the sensitive climate regime of northern Europe. Our aim is to connect hydrographical changes, reflected by the dinoflagellates cyst (dinocysts) assemblages in the sediments in the Malangen fjord, to local and regional climatic phases. Previous studies have shown that dinocyst assemblages are influenced by temperature, salinity, and the availability of nutrients (e.g. de Vernal et al. 2005, doi:10.1016/j.quascirev.2004.06.014; de Vernal et al. 2001, doi:10.1002/jqs.659; Grosfjeld et al. this volume; Rochon et al. 2008, doi:10.1016/j.marmicro.2008.04.001; Solignac et al. this volume). Dinoflagellates are mostly unicellular organisms that make up one of the main groups of phytoplankton. They are able to regulate their depth within the photic zone and to concentrate along oceanic fronts, which provide nutrient-enriched waters. The dinoflagellate cysts are the hypnozygotes of dinoflagellates naturally produced during the life cycle. Their wall is composed of a highly resistant organic material, which has a high potential to fossilize. Because dinocysts species are linked to particular abiotic and biotic parameters, the dinocyst assemblages provide information about past surface water conditions. Since each fjord has its own hydrographic setting, it is necessary to establish a firm link between the dinocyst composition of the sediment surface samples and the surface water conditions. Indeed the modern dinocyst distribution in subarctic fjords is little known. Thus, in addition to detailing dinocyst results from two shallow cores, several sediment surface samples located along a transect running from the head to the mouth of the fjord, and extending onto the shelf, are also presented.
Resumo:
The present study analyses the sign, strength, and working mechanism of the vegetation-precipitation feedback over North Africa in middle (6 ka BP) and early Holocene (9 ka BP) simulations using the comprehensive coupled climate-vegetation model CCSM3-DGVM (Community Climate System Model version 3 and a dynamic global vegetation model). The coupled model simulates enhanced summer rainfall and a northward migration of the West African monsoon trough along with an expansion of the vegetation cover for the early and middle Holocene compared to the pre-industrial period. It is shown that dynamic vegetation enhances the orbitally triggered summer precipitation anomaly by approximately 20% in the Sahara-Sahel region (10-25° N, 20° W-30° E) in both the early and mid-Holocene experiments compared to their fixed-vegetation counterparts. The primary vegetation-rainfall feedback identified here operates through surface latent heat flux anomalies by canopy evaporation and transpiration and their effect on the mid-tropospheric African easterly jet, whereas the effects of vegetation changes on surface albedo and local water recycling play a negligible role. Even though CCSM3-DGVM simulates a positive vegetation-precipitation feedback in the North African region, this feedback is not strong enough to produce multiple equilibrium climate-ecosystem states on a regional scale.