967 resultados para CRAB LARVAE
Resumo:
In animal contests selection should favour information gathering regarding the likely costs and benefits of continued conflict, and displays may provide a means for contestants to gain information about the fighting ability or aggressive intent of competitors. However, there is debate over the reliability of such displays and low levels of deception may occur within otherwise honest signalling systems. Hermit crabs use displays involving the chelipeds during agonistic encounters. We examined how variation in chelae size in relation to body size, a determinant of fighting ability, affects their use in displays and the process and outcome of contests over gastropod shells. In accordance with deceptive use of an otherwise honest signal, we found that contestants with large chelipeds for their body size spent more time performing the cheliped presentation display. Moreover, cheliped residuals and displays influenced the escalation level of encounters. There was a positive association between cheliped displays and the occurrence of 'grappling', but a negative association between displays and the occurrence of shell fights, suggesting that displays may signal aggressive intent and a reluctance to back off or accept the more passive defender role in a fight. Furthermore, the smaller of the two contestants in shell fights had larger cheliped residuals compared to those smaller contestants not involved in shell fights, which is consistent with disrupted opponent assessment. This study adds to mounting evidence that when acting as a signaller, individuals for whom the display exaggerates competitive ability attempt to manipulate opponents, using the display more often. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Whether animal signals convey honest information is a central evolutionary question, since selection pressures could, in some circumstances, favour dishonesty. A prior study of signalling in hermit crabs proposed that the cheliped extension display of Pagurus bernhardus might represent such an instance of dishonesty. A limitation of this conclusion, however, was that honesty was defined in the context of size assessment, neglecting the potential information that displays might transmit about signallers' variable internal states. Recent analyses of signalling in this same species have shown that its displays provide reliable information about the amount of risk crabs are prepared to tolerate, which therefore might enable signallers to use these displays to honestly convey their motivation to take such risks. Here we test this 'honest advertisement of motivation' hypothesis by varying crabs' need for food and analysing their signalling during simulated feeding conflicts against a model. When crabs were starved for 1-5 days, they dropped significantly in weight. Despite this decrement in resource-holding potential and energy reserves, crabs were more likely to perform cheliped extension displays the longer they were food deprived. Longer-starved crabs, whose subjective resource value was greater, also displayed at a higher rate and were more likely to risk seizing the food from the model. We conclude that cheliped extension is a reliable indicator of crabs' internal state and suggest how this honest signal might operate in conflicts over a variety of other resources in addition to food. We propose that future studies detecting apparent dishonesty should analyse many possible signal-state correlations before concluding a signal is actually dishonest. (c) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Agonistic interactions between animals are often settled by the use of repeated signals which advertise the resource-holding potential of the sender. According to the sequential assessment game this repetition increases the accuracy with which receivers may assess the signal, but under the cumulative assessment model the repeated performances accumulate to give a signal of stamina. These models may be distinguished by the temporal pattern of signalling they predict and by the decision rules used by the contestants. Hermit crabs engage in shell fights over possession of the gastropod shells that they inhabit. During these interactions the two roles of signaller and receiver may be examined separately because they are fixed for the duration of the encounter. Attackers rap their shell against that of the defender in a series of bouts whereas defenders remain tightly withdrawn into their shells for the duration of the contest. At the end of a fight the attacker may evict the defender from its shell or decide to give up without first effecting an eviction; the decision for defenders is either to maintain a grip on its shell or to release the shell and allow itself to be evicted. We manipulated fatigue levels separately for attackers and defenders, by varying the oxygen concentration of the water that they are held in prior to fighting, and examined the effects that this has on the likelihood of each decision and on the temporal pattern of rapping. We show that the vigour of rapping and the likelihood of eviction are reduced when the attacker is subjected to low oxygen but that this treatment has no effect on rates of eviction when applied to defenders. We conclude that defenders compare the vigour of rapping with an absolute threshold rather than with a relative threshold when making their decision. The data are compatible with the cumulative assessment model and with the idea that shell rapping signals the stamina of attackers, but do not fit the predictions of the sequential assessment game.
Resumo:
1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to parasites and pathogens (i.e. density-dependent prophylaxis).
Resumo:
Hermit crabs use empty gastropod shells as protective armour and enlarged chelipeds as signals and weapons. However, carrying armour and arms may impose energy costs that result in increased lactate and hence potential fatigue and there may be consequent effects on general activity. We investigated whether variation in shell and cheliped size influences lactate levels in hermit crabs. Lactate was positively related to residual cheliped size for both sexes and was higher in males than females; when we controlled for body size, the former had larger chelipeds. Shell weight unexpectedly had no effect on lactate but crabs in small shells had high lactate, possibly because of reduced ability to maintain a respiratory current. The size of natural shells had no effect on activity but the addition of food odour increased locomotion. However, activity was not related to lactate. We conclude that possession of larger chelipeds than expected for body size imposes significant costs and may limit development of sexual dimorphism. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.