977 resultados para COLLAGEN FIBER ORIENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92.10(-3) (degrees C)(-1). The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 degrees C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer optical fibers (POFs) doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT tecniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 degrees C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文利用挤铸造方法结合热压的方法制备了Al_(18)B_4O_(33)w/Al和SiCw/Al复合材料,实现了对增强体取向的调整。利用SEM在位观测、MTS宏观拉伸等实验方法研究了复合材料的细观结构、细观损伤演化规律和材料的宏观性能。通过理论分析、数值计算,结合实验的方法,定量地讨论了材料性能和其微观结构参数之间的关系,定性地总结了短纤维增强金属基复合材料的细观损伤演化规律。经过分析和实验,阐明了热挤压对短纤维增强金属基复合材料增强体空间取向性(取向密度)的影响;讨论了在短纤维增强金属基复合材料中宏观应变和基体、增强体应变的关系;并且进一步研究了密排、多取向群体短纤维增强体的应变,在材料处于弹性和塑性阶段的演化规律;提出了利用增强体轴向应变和材料宏观应变在该方向的分量之比值λ_f来描述增强体增强效果,给出了λ_f在材料承载过程中的演化规律;总结了短纤维增强金属基复合材料的性能(弹性模量)和晶须空间取向之间的关系;利用修正了的混合定律比较好地预测了短纤维增强金属基复合材料的弹性模量;并且进一步预测了短纤维增强金属基复合材料的弹塑性性能。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the influence of the relative humidity (RH) on the wavelength of fiber Bragg grating sensors (FBGS), performing tests with five FBGS at different humidity and temperature conditions. These tests were performed in a climate chamber whose RH changes according to a scheduled profile from 30% to 90%, in steps of 10%. These profiles were repeated for a wide range of temperatures from to , in steps of . Two different types of instrumentation methods have been tested, spot welding and epoxy bonding, in two different materials, steel and carbon fiber reinforced polymer (CFRP). We discuss the results for each type of sensor and instrumentation method by analyzing the linearity of the Bragg wavelength with RH and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 degrees C (environmental condition) to 50 degrees C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001-1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical investigation on the nonlinear pulse propagation and dispersive wave generation in the anomalous dispersion region of a microstructured fiber is presented. By simulating the dispersive wave generation under different conditions. it is found that the generation mechanism of the dispersive wave is mainly due to the pulse trapping across the zero-dispersion wavelength. By varying the initial pulse chirp, the output spectrum can be broadened and the intensity of the dispersive wave can be obviously enhanced. In particular, there exists an optimal positive chirp which maximizes the intensity of the dispersive wave. This effect can be explained by the energy transfer from the Raman soliton to the dispersive wave due to the effect of the pulse trapping and the effect of the higher-order dispersion. From the phase aspect, the explanation of this effect is also included. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forces cells apply to their surroundings control biological processes such as growth, adhesion, development, and migration. In the past 20 years, a number of experimental techniques have been developed to measure such cell tractions. These approaches have primarily measured the tractions applied by cells to synthetic two-dimensional substrates, which do not mimic in vivo conditions for most cell types. Many cell types live in a fibrous three-dimensional (3D) matrix environment. While studying cell behavior in such 3D matrices will provide valuable insights for the mechanobiology and tissue engineering communities, no experimental approaches have yet measured cell tractions in a fibrous 3D matrix.

This thesis describes the development and application of an experimental technique for quantifying cellular forces in a natural 3D matrix. Cells and their surrounding matrix are imaged in three dimensions with high speed confocal microscopy. The cell-induced matrix displacements are computed from the 3D image volumes using digital volume correlation. The strain tensor in the 3D matrix is computed by differentiating the displacements, and the stress tensor is computed by applying a constitutive law. Finally, tractions applied by the cells to the matrix are computed directly from the stress tensor.

The 3D traction measurement approach is used to investigate how cells mechanically interact with the matrix in biologically relevant processes such as division and invasion. During division, a single mother cell undergoes a drastic morphological change to split into two daughter cells. In a 3D matrix, dividing cells apply tensile force to the matrix through thin, persistent extensions that in turn direct the orientation and location of the daughter cells. Cell invasion into a 3D matrix is the first step required for cell migration in three dimensions. During invasion, cells initially apply minimal tractions to the matrix as they extend thin protrusions into the matrix fiber network. The invading cells anchor themselves to the matrix using these protrusions, and subsequently pull on the matrix to propel themselves forward.

Lastly, this thesis describes a constitutive model for the 3D fibrous matrix that uses a finite element (FE) approach. The FE model simulates the fibrous microstructure of the matrix and matches the cell-induced matrix displacements observed experimentally using digital volume correlation. The model is applied to predict how cells mechanically sense one another in a 3D matrix. It is found that cell-induced matrix displacements localize along linear paths. These linear paths propagate over a long range through the fibrous matrix, and provide a mechanism for cell-cell signaling and mechanosensing. The FE model developed here has the potential to reveal the effects of matrix density, inhomogeneity, and anisotropy in signaling cell behavior through mechanotransduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acoustic-optics programmable dispersive filter (AOPDF) was first employed to actively control the linearly polarized femtosecond pump pulse frequency chirp for supercontinuum (SC) generation in a high birefringence photonic crystal fiber (PCF). By accurately controlling the second order phase distortion and polarization direction of incident pulses, the output SC spectrum can be tuned to various spectral energy distributions and bandwidths. The pump pulse energy and bandwidth are preserved in our experiment. It is found that SC with broader bandwidth can be generated with positive chirped pump pulses except when the chirp value is larger than the optimal value, and the same optimal value exists for the pump pulses polarized along the two principal axes. With optimal positive chirp, more than 78% of the pump energy can be transferred to below 750 nm. Otherwise, negative chirp will weaken the blue-shift broadening and the SC bandwidth. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulse-compression scheme based on cascade of filamentation and hollow fiber has been demonstrated, Pulses with duration of sub-5 fs and energy of 0.2 mJ near 800 nm have been generated by compressing the similar to 40 fs pulses from a commercial laser system. This method is promising to generate near monocycle high energy pulses. [GRAPHICS] Measured autocorrelation curve of the final compressed pulses with duration of sub-5 fs (black solid) and the simulated autocorrelation curve of 4.6 fs pulse near 800 rim (red dash) (C) 2008 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized microgratings were induced in the bulk SrTiO3 crystal by readily scanning the laser focus in the direction perpendicular to the laser propagation axis. The groove orientations of those gratings could be controlled by changing the irradiation pulse number per unit scanning length, which could be implemented either through adjusting the scanning velocity at a fixed pulse repetition rate or through varying the pulse repetition rate at a fixed scanning velocity. This high-speed method for fabrication of microgratings will have many potential applications in the integration of micro-optical elements. The possible formation mechanism of the self-organized microgratings is also discussed. (C) 2007 Optical Society of America.