800 resultados para COLISÕES NUCLEARES
Resumo:
We investigate the formation of molecules under the action of external field acting during the atomic collision. To describe this process, the collision of atomic pairs, we use the Morse oscillator model driven The study was developed from the standpoint of classical mechanics by analyzing the sensitivity of the system with respect to initial conditions, the verification of chaotic dynamics associated with the process of formation of molecules with laser and analysis of system dynamics and the likelihood of photoassociation in response to the external field parameters
Resumo:
Nowadays, the biggest part of the world's energy supply comes from fossil fuels and nuclear. However, the current need of the society for the preservation of the environment and wise use of natural resources, has favored the search for alternative energy sources and improvement of energy efficiency. In this new scenario, companies are beginning to mobilize in order to adapt its facilities to renewable energy. Solar, with its immense potential, not really exploited yet, can be very useful for companies that want to beat their sustainability goals. Given these facts, the aim is to evaluate the economic viability of introducing a solar water heater which uses a colorless PET bottle as one of its components in a plant. The hot water generated will heat the air of a paint booth and a warm house, reducing energy consumption, since they are heated by electric heaters
Resumo:
In the treatment plans in conventional Proton therapy are considered only the elastic interactions of protons with electrons and/or nuclei, it means, mainly ionization and coulomb excitation processes. As the energy needed to reach the deep tumors should be of several hundred of MeVs, certainly the nuclear inelastic channels are open. Only some previous studies of the contribution of these processes in the full dose have been made towards targets composed of water. In this study will be presented the results of the simulation of the processes of interaction of beams of protons in the range of 100-200 MeV of energy with a cylindrical phantom composed by striated muscle (ICRU), emphasizing in the contribution to total dose due to the deposition of energy by secondary particles alpha (α), deuterium (2H), tritium (3H), neutron (n) and hélio3 (3He), originated by nuclear inelastic processes. The simulations were performed by using the method of Monte Carlo, via the computer code MCNPX v2.50 (Monte Carlo N-Particle eXtended). The results will be shown demonstrated through the graphics of the deposited dose with or without nuclear interaction, the percentual of dose deposited by secondary particles, the radial dispersion of neutrons, as well as the multiplicity of secondary particles
Resumo:
Since the beginning of life in society, the human being has sought sources of energy that can be used continuously, or stored to be consumed in times of need. The various energy generation processes has enabled the human race for the implementation of many activities ranging from food preparation, handling of large industries and even the possibility of total annihilation by the availability of powerful nuclear weapons. In Brazil, whereupon the various deleterious aspects and especially the finite resources used on a large scale for the energy conservation, there is a huge devotion of society referred to the prospects for alternatives to the use of energy in local, regional and global, but overall, as it wouldn’t be different, the main factors in this scenario are economic. The fact that the unused potential of a region in the use of alternative sources of energy leads to a larger socio-environmental prejudice generalized to all. The purpose of this project is targeted for a comprehensive, systemic and integrated discussion about some of the main alternative energy sources, associated with technical procedures related to them, to contribute to a better and effective use of natural resources available in each region of the country, in order to minimize the impacts on the environment in which they are inserted.
Resumo:
In proton therapy, the deposition of secondary particles energy originated by nuclear inelastic process (n, 2H, 3H, 3He and α) has a contribution in the total dose that deserves to be discussed. In calculations of plans implemented for routine treatment, the paid dose is calculated whereas the proton loses energy by ionization and or coulomb excitement. The contribution of inelastic processes associated with nuclear reactions is not considered. There are only estimates for pure materials or simple composition (water, for example), because of the difficulty of processing targets consisting of different materials. For this project, we use the Monte Carlo method employing the code MCNPX v2.50 (Monte Carlo N-Particle eXtended) to present results of the contribution to the total dose of secondary particles. In this work, it was implemented a cylindrical phantom composed by cortical bone, for proton beams between 100 and 200 MeV. With the results obtained, it was possible to generate graphics to analyze: the dose deposition relation with and without nuclear interaction, the multiplicity and percentage of deposited dose for each secondary particle and a radial dispersion of neutrons in the material
Resumo:
The studies of this work aimed to determine the labile fractions of manganese (Mn) in natural and drainage water samples collected around the Osamu Utsumi uranium mine, located in the municipality of Caldas, south-central region of Poços de Caldas- MG, using the technique of diffusion gradient in thin films (DGT). The DGT devices were mounted with Chelex-100 resin, polyacrylamide-agarose hydrogel (conventional porosity) and cellulose acetate membrane. The device were deployed up to 48 hours in six water samples collected from different areas around the uranium mine (075, 076, 022-E, 025-E, 014, and 041). The DGT devices immersed in each sample were gradually removed after 4, 8, 12, 24 and 48 hours. The pH of the samples ranged from 3.0 to 10.5, which influenced the lability and the sampling of the analyte by the Chelex-100 resin. The results showed a linear relationship between accumulated mass and sampling time (immersion curve) for samples 014 and 025-E (pH between 6 and 8) suggesting the ability of the DGT technique for sampling the analyte. The results obtained for samples 075 and 076 (pH<5) and samples 041 and 022-E (pH around 10) were characterized by nonlinear relationships. The values obtained by DGT were compared with Solid Phase Extraction (SPE) technique using Chelex-100. For samples 014 and 025-E, there was a good agreement between the results obtained by both techniques
Resumo:
Since its discovery, radioactivity has brought numerous benefits to human societies. It has many applications in medicine, serving as a tool for non-invasive methods for diagnosis and therapies against diseases such as cancer. It also applies to technologies for energy in nuclear power plants with relatively low impacts on terms of perfect security. All applications, however, have risks, requiring maximum caution to drive processes and operations involving radioactive elements because, once released into the environment, they have extremely harmful effects on organisms affected. This paper presents fundamental concepts and principles of nuclear physics in order to understand the effects of radioactive elements released into the environment, culminating on the issue of radioactive contamination. Literature review allowed us to understand the radioactive contamination problem on living beings. Three major nuclear accidents have happened in the last thirty years, two of them in consecutive years. The nuclear accident at Chernobyl, Ukraine, in 1986, polluted large areas, condemning hundreds of thousands of people to live with consequences of the accident and effects of radiation, killing thousands of people throughout the years. In 1987, a major radiological accident occurred in Goiania (GO) when a source of radioactive cesium was violated, leading to the death of those who had direct or indirect contact with cesium. The most recent accident, in March, 2011, was located at the nuclear power plant in Fukushima Prefecture, Japan, after an earthquake and tsunami hit the region. There is no extensive and accurate knowledge about the consequences of the contamination entailed in that accident, although it is possible to verify signals on a global scale. An analysis of reports of contamination of large areas generated by nuclear plants with release of hazardous wastes suggests it is necessary to rethink the energy matrix of the various countries...
Resumo:
The Therapy with proton beam has shown more e ective than Radiotherapy for oncology treatment. However, to its planning use photon beam Computing Tomography that not considers the fundamentals di erences the interaction with the matter between X-rays and Protons. Nowadays, there is a great e ort to develop Tomography with proton beam. In this way it is necessary to know the most likely trajectory of proton beam to image reconstruction. In this work was realized calculus of the most likely trajectory of proton beam in homogeneous target compound with water that was considered the inelastic nuclear interaction. Other calculus was the analytical calculation of lateral de ection of proton beam. In the calculation were utilized programs that use Monte Carlo Method: SRIM 2006 (Stopping and Range of Ions in Matter ), MCNPX (Monte Carlo N-Particle eXtended) v2.50. And to analytical calculation was employed the software Wolfram Mathematica v7.0. We obtained how di erent nuclear reaction models modify the trajectory of proton beam and the comparative between analytical and Monte Carlo method
Resumo:
The goal of this work is to study the process of interaction of protons with matter through Monte Carlo simulation. For this purpose, it was employed the SRIM program (Stopping and Range of Ions in Matter ) and MCNPX (Monte Carlo N-Particle eXtended) v2.50. This work is going to support the development of a tomography system with protons. It was studied the interaction of proton with the follow materials: Polimethyl Mehacralate (PMMA), MS20 Tissue Substitute and water. This work employed energies in range of 50 MeV and 250 MeV, that is the range of clinical interest. The energy loss of proton after cross a material layer, the decreasing of its intensity, the angular and lateral de ection of incident beam, including and excluding nuclear interactions. This work is related with Medical Physics and Material Physics, like interaction of radiation with matter, particle transport phenomena, and the experimental methods in Nuclear Physics like simulation and computational by Monte Carlo method
Resumo:
Magnetic resonance imaging (MRI), which is studied since 1938, is a technique used in medicine to produce high quality images from inside the human body. These images are produced non-invasively and without ionizing radiation. In addition, MRI is an extremely flexible technique, with which it is possible to produce images with different contrasts that provide different information about the anatomy, structure and function of the human body, and it is therefore one of the techniques preferred by radiologists. The phenomenon of MRI is based on the interaction of magnetic fields with the nuclear spins of the scanned sample. In this work a detailed study of the technique of magnetic resonance imaging is presented, with a description of the main features of the images produced by the technique and an analysis of its application to the fields of applications Neurology and Neuroscience
Resumo:
Desde o conhecimento da radiação e seus efeitos a necessidade de mensurá-la intriga os cientistas. Os detectores de radiação mais difundidos atualmente fazem o uso de cristais semicondutores. Porém, esses detectores tem uma temperatura ótima de funcionamento que acaba sendo ultrapassada, já que o processo gera calor. Por isso, o resfriamento acaba sendo uma necessidade. O desenvolvimento de detectores de radiação com cristal semicondutor que opere a temperatura ambiente é tema de muitos estudos, já que evitaria o processo de resfriamento, trabalhoso e de alto custo. No Centro de Tecnologia das Radiações (CTR) do Instituto de Pesquisas Energéticas e Nucleares (IPEN) o sal de Brometo de Tálio (TlBr) é estudado para esta finalidade. Até ser um cristal semicondutor este sal deve passar por vários processos, entre eles o de purificação e o de cristalização. A técnica utilizada para purificar este cristal é a de Refino zonal. Após ser purificado por esta técnica o sal estará apto a ser cristalizado e consequentemente integrar um equipamento de detecção de radiação. Portanto, esta monografia teve como objetivo realizar a análise da segregação das impurezas do sal de TlBr através da técnica de espectroscopia de massa em fonte de plasma induzido (ICP-MS) e espectroscopia de emissão atômica (ICP-AES). Determinando assim se o mesmo está apto a ser cristalizado e vir a compor um detector de radiação
Resumo:
According to the National Institute of Cancer – INCA, 466.730 new cancer cases will occur in Brazil in 2009. Prostate and Lung cancer in man are the most incident types (in exception of the non-melanoma cancer). The brachytherapy with 125-iodine sources is an important method of prostate cancer treatment. The implant with iodine-125 seeds uses aproximately 100 seeds that are imported impossibilitating the treatment in large scale. For this reason, a multidisciplinary group was created at the Energetic and Nuclear Research Institute – Radiation Technology Center (IPEN –CTR / SP) to develop a national 125-iodine source and established a facility for local production. The seeds manufacture in Brazil will diminish the cost of treatment and prostate brachytherapy will be offered to more patients. This work aim is to observe and discuss the methods used in seeds manufacture there are being developed in Brazil and to present an prostate cancer case folloied in A.C. Camargo Hospital. The 125-iodine is adsorbed in an silver wire, then deposited at titanium coat. The weld is made by an process of plasm sealing. The seeds goes through several test to guarantee that there is no leakage. The result is an high quality and cheaper product. The implant tecnique is an fast and save procedure. The medical physicst preplan the case to stipulate the quantity of seeds there will be used. At the dat of the implant the medical physicst replan the procedure due to changes of volume in the organ. That assure the correct dose distribution in the target. Besides, the 125-iodine low energy is absorbed at the volume of interrest saving sourronding healthy tissues such as the rectum and the urethra
Resumo:
This work consisted in analysing five materials which mean respect to subjects related to Particle Physics, aiming to explore their potentialities for the use in the High School levels, particularly by physics teachers. On this perspective, we sought to describe the contents of each material and point out their potentialities as material of didactic support. They are: 1. The purpose of Secretaria da Educação do Estado de São Paulo, presented in the Teacher's Guide of the Program São Paulo faz escola; 2. The Game Sprace Game, elaborated by the European Organization for Nuclear Research (CERN); 3. The book O discreto charme das partículas elementares, written by the professor Maria Cristina Abdalla; 4. The video O discreto charme das partículas elementares, based on the book of Professor Maria Cristina Abdalla which was produced by TV Cultura in association with the Ministério da Educação e Cultura” (MEC). The book Partículas elementares no ensino médio: uma abordagem a partir do LHC written by Wagner Franklin Balthazar and Alexandre Lopes de Oliveira, from the collection CBPF - Tópicos de Física. The work was constructed on a qualitative perspective, that is, it did not attempt to quantify the help that each material could offer to Physics teaching. One sought to describe and analyse, from different theoretical frames, their potentialities for the use in the High School level. The results indicate that all the materials analysed can contribute to the Physics teaching, and beyond, as they own format and approches distinct from the subject, they can be used as a whole or in parts, together or separately, depending on the objectives to be reached and on the profile of the target public
Resumo:
Cosmic radiation has been identi ed as one of the main hazard to crew, aircraft and sensitive equipments involved in long-term missions and even high-altitude commercial ights. Generally, shields are used in spatial units to avoid excessive exposure, by holding the incident radiation. Unfortunatelly, shielding in space is problematic, especially when high-energy cosmic particles are considered, due to the production of large number of secondary particles, mainly neutrons, protons and alpha particles, caused by spallation reactions and quasi-elastic processes of the corpuscular radiation with the shield. Good parameters for checking the secondary particle production at target material are diferential cross section and energy deposited in the shield. Addition experiments, some computer codes based on Monte Carlo method show themselves a suitable tool to calculate shield parameters, due to have evaluated nuclear data libraries implemented on the algorithm. In view of this, the aim of this work is determining the parameters evaluated in shielding materials, by using MCNPX code, who shows good agreement with experimental data from literature. Among the materials, Aluminium had lower emission and production of secondary particles
Resumo:
The contribution of the total dose due to deposition of secondary energy particles caused by nuclear inelastic processes (n, 2H, 3H, 3He and ) in proton therapy is an opened problem and in discussion. In the calculations of plans implemented for routine treatment, the paid dose is calculated whereas that the proton loses energy by ionization and or coulomb excitement. The contribution of inelastic processes associated with nuclear reactions is not considered, mainly due to the difficulty of processing targets consisting of various materials. In this sense, there are only estimates for pure materials or simple composition (water, for example).This work presents the results of simulations by the Monte Carlo method employing the code MCNPX v2.50 (Monte Carlo N-Particle eXtended) of the contribution to the total dose of secondary particles. The study was implemented in a cylindrical phantom composed by compact bone, for monochromatic beams of protons between 100 and 200 MeV with pencil beam form